MEMORANDUM

TO: The Buildings and Grounds Committee:

Timothy B. Robertson, Chair
Hunter E. Craig
Helen E. Dragas
Kevin J. Fay
Frank E. Genovese
William H. Goodwin Jr.
John A. Griffin
John L. Nau III
George Keith Martin, Ex Officio
Timothy Beatley, Faculty Consulting Member

and

The Remaining Members of the Board and Senior Advisor:

Frank B. Atkinson Bobbie G. Kilberg
Blake E. Blaze Stephen P. Long, M.D.
Allison Cryor DiNardo Edward D. Miller, M.D.
Marvin W. Gilliam Jr. Linwood H. Rose
Victoria D. Harker Leonard W. Sandridge Jr.

FROM: Susan G. Harris

SUBJECT: Minutes of the Meeting of the Buildings and Grounds Committee on February 20, 2014

The Buildings and Grounds Committee of the Board of Visitors of the University of Virginia met, in Open Session, at 1:05 p.m., on Thursday, February 20, 2014, in the Board Room of the Rotunda; Timothy B. Robertson, chair, presided.

Hunter E. Craig, Helen E. Dragas, Kevin J. Fay, Frank E. Genovese, William H. Goodwin Jr., John A. Griffin, and Leonard W. Sandridge Jr. were present.

Present as well were Teresa A. Sullivan, Susan G. Harris, Donna Price Henry, Patrick D. Hogan, R. Edward Howell, David W. Martel, Marcus L. Martin, M.D., Colette Sheehy, Robert D. Sweeney, Anthony de Bruyn, David J. Neuman, Nancy A. Rivers, Tim R. Rose, Pamela H. Sellers, Donald E. Sundgren, and Debra D. Rinker.
Mr. Robertson opened the meeting by asking Ms. Sheehy, Vice President for Management and Budget, to present the action item.

Action Item: Project Approval: Wilson Hall Renewal

Ms. Sheehy reviewed with the Committee plans for a renewal of Wilson Hall. The project will provide interior renewal of the building, partial renovation of the first and second floors, and an accessible entryway facing Jefferson Park Avenue. These improvements have an estimated cost of $4.65 million, and will be funded using cash: $1.65 million from maintenance reserve funds and $3 million from gifts and cash held by the College of Arts and Sciences.

On motion, the committee approved the following resolution:

REVISION TO THE UNIVERSITY’S MAJOR CAPITAL PROJECTS PROGRAM – WILSON HALL RENEWAL

WHEREAS, the University proposes the addition of the Wilson Hall Renewal project to the Major Capital Projects Program;

RESOLVED, the Board of Visitors approves the addition of the Wilson Hall Renewal project, at an estimated cost of $4.65 million, to the University’s Major Capital Projects Program.

Discussion of Committee Goals

Mr. Robertson led a brief discussion on committee goals for this year and fiscal year 2015, which are as follows: (1) developing a comprehensive space planning and real estate management approach; (2) continuing work toward the goals outlined in the sustainability resolution adopted by the Board in 2011; (3) advancing the Jeffersonian Grounds Initiative with priority given to the Rotunda renovation.

Report by the Vice President for Management and Budget

Ms. Sheehy presented two reports to the committee. The first report was the annual deferred maintenance report. She said the University has made progress towards its goals in this area: maintenance reinvestment rate increased from 1.2% in 2004 to 1.68% as of June 30, 2013; the goal is 2%. The Facilities Condition Index decreased from 10.6% in 2004 to 6.6%; the goal is 5%.
The second report was at the request of the committee. Ms. Sheehy, Mr. Rose (CEO of the U.Va. Foundation), and Mr. Neuman provided an overview of the properties owned and leased by the University and the U.Va. Foundation, and the University Grounds Plan including the redevelopment zones. The committee discussed the rationale for acquiring property contiguous to the Grounds; how much land the University should own; and whether the University should consider disposing of parcels that may not be strategic.

Report by the Architect for the University

Mr. Neuman presented three reports to the committee. He briefed the Committee about the Historic Preservation Framework Plan and the 2014 Addendum which proposes adding 43 buildings and two core landscapes.

The second report was the 2013 Cultural Landscape Report detailing the evolution of the landscape of the Academical Village. This report will be especially useful in developing landscape plans following the renovation of the Rotunda.

The third report was an update on Phase II of the Rotunda Renovation project, specifically on the elevator enclosure and exit stairs which will provide access to the mechanical room and service spaces that will be built beneath the Rotunda East Courtyard.

EXECUTIVE SESSION

After adopting the following motion, the voting members present plus Mr. Sandridge, Ms. Sellers, Ms. Harris, Ms. Sullivan, Ms. Henry, Mr. Hogan, Mr. Howell, Mr. Martel, Dr. Martin, Mr. Neuman, Ms. Rivers, Ms. Sheehy, and Ms. Rinker participated in Executive Session at 2:10 p.m.:

That the Buildings and Grounds Committee go into closed session to discuss a fundraising strategy and potential gifts from individual donors for a potential building project, as provided for by Virginia Code §2.2-3711 A(8).

At 2:45 p.m., the committee left closed session and, on motion, adopted the following resolution certifying that the deliberations in closed session had been conducted in accordance with the exemptions permitted by the Virginia Freedom of Information Act:

That we vote on and record our certification that, to the best of each Member's knowledge, only public business matters lawfully exempted from open meeting requirements and which were identified in
the motion authorizing the closed session, were heard, discussed or considered in closed session.

On motion, the meeting was adjourned at 2:45 p.m.

SGH:ddr
These minutes have been posted to the University of Virginia’s Board of Visitors website.
http://www.virginia.edu/bov/buildingsgroundsminutes.html
MISCELLANEOUS REPORTS
Buildings and Grounds Committee
University of Virginia

February 20, 2014
Major Projects Status Report, Future Design Actions and Planning Studies

January 2014

<table>
<thead>
<tr>
<th>University of Virginia, 207 - Academic Division</th>
</tr>
</thead>
</table>

Authorized Academic Division Projects Under Construction

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total</th>
<th>Apr-11</th>
<th>May-12</th>
<th>Sep-12</th>
<th>Nov-10</th>
<th>Oct-11</th>
<th>Nov-12</th>
<th>Dec-12</th>
<th>Jan-13</th>
<th>Feb-13</th>
<th>Mar-13</th>
<th>Apr-13</th>
<th>May-13</th>
<th>Jun-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alderman Road Phase IV, 8th-6</td>
<td>38,000,000</td>
<td>18,000,000</td>
<td>14,000,000</td>
<td>11,000,000</td>
<td>9,000,000</td>
<td>7,000,000</td>
<td>5,000,000</td>
<td>3,000,000</td>
<td>1,000,000</td>
<td>500,000</td>
<td>300,000</td>
<td>100,000</td>
<td>30,000</td>
<td>10,000</td>
</tr>
<tr>
<td>East Chiller Plant & Lue Street Realignment</td>
<td>36,000,000</td>
<td>20,000,000</td>
<td>10,000,000</td>
<td>4,000,000</td>
<td>1,000,000</td>
<td>500,000</td>
<td>250,000</td>
<td>100,000</td>
<td>50,000</td>
<td>20,000</td>
<td>10,000</td>
<td>5,000</td>
<td>2,000</td>
<td>1,000</td>
</tr>
<tr>
<td>McCue Center Renovations</td>
<td>5,000,000</td>
<td>2,000,000</td>
<td>1,000,000</td>
<td>500,000</td>
<td>250,000</td>
<td>125,000</td>
<td>62,500</td>
<td>31,250</td>
<td>15,625</td>
<td>7,812</td>
<td>3,906</td>
<td>1,953</td>
<td>976</td>
<td>488</td>
</tr>
<tr>
<td>New Cabell Hall Renovation</td>
<td>7,000,000</td>
<td>6,000,000</td>
<td>1,000,000</td>
<td>500,000</td>
<td>250,000</td>
<td>125,000</td>
<td>62,500</td>
<td>31,250</td>
<td>15,625</td>
<td>7,812</td>
<td>3,906</td>
<td>1,953</td>
<td>976</td>
<td>488</td>
</tr>
<tr>
<td>North Grounds Res On Exp/Ren</td>
<td>18,513,000</td>
<td>15,000,000</td>
<td>2,500,000</td>
<td>500,000</td>
<td>250,000</td>
<td>125,000</td>
<td>62,500</td>
<td>31,250</td>
<td>15,625</td>
<td>7,812</td>
<td>3,906</td>
<td>1,953</td>
<td>976</td>
<td>488</td>
</tr>
<tr>
<td>Rugby Road Office Building</td>
<td>10,000,000</td>
<td>5,000,000</td>
<td>2,500,000</td>
<td>1,250,000</td>
<td>625,000</td>
<td>312,500</td>
<td>156,250</td>
<td>78,125</td>
<td>39,062</td>
<td>19,531</td>
<td>9,760</td>
<td>4,880</td>
<td>2,440</td>
<td>1,220</td>
</tr>
<tr>
<td>Rollins Hall Renovation</td>
<td>250,000</td>
<td>100,000</td>
<td>50,000</td>
<td>25,000</td>
<td>12,500</td>
<td>6,250</td>
<td>3,125</td>
<td>1,562</td>
<td>781</td>
<td>390</td>
<td>195</td>
<td>97</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>Rotunda Roof</td>
<td>7,190,000</td>
<td>3,500,000</td>
<td>1,750,000</td>
<td>875,000</td>
<td>437,500</td>
<td>218,750</td>
<td>109,375</td>
<td>54,687</td>
<td>27,344</td>
<td>13,672</td>
<td>6,836</td>
<td>3,418</td>
<td>1,709</td>
<td>854</td>
</tr>
</tbody>
</table>

Subtotal Authorized Projects Under Construction: $280,278,978

Notes:
- Projects are highlighted in blue if the Board of Visitors approved them.
- The table includes budget, scope, and design approval actions.
- Dates are on a fiscal year basis.
- Numbers include budget, scope, and design approval actions.
- Construction is 100% complete.
- Details include project descriptions, budget allocations, and completion dates.
- Additional notes on specific projects, such as the completion of a 12% project and the remainder being under contract.
- Additional funding notes, like the $300 million project, are highlighted.
Major Projects Status Report, Future Design Action and Planning Studies

January 2014

Authorized Academic Division Projects in Planning

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Newcomb Road Chiller Plant</td>
<td>11,640,000</td>
<td>Apr-11</td>
<td>Nov-12</td>
<td>Nov-12</td>
<td>Affiliated Engineers, Inc.</td>
<td>Chapel Hill, NC</td>
<td>Bowie-Osborne Washington DC</td>
<td>Nov-13 approved</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Rotunda Planning</td>
<td>2,251,186</td>
<td>Apr-11</td>
<td></td>
<td></td>
<td>John Walker Associates, Albany, NY</td>
<td></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Gross Anatomy Lab Renovation</td>
<td>5,000,000</td>
<td>Nov-13</td>
<td></td>
<td></td>
<td>UVA F&D - Engineering & Design Division, Charlottesville, VA</td>
<td>N/A</td>
<td>TBD</td>
<td>TBD</td>
<td>N/A</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Acquire and Renovate 560 Ray C. Hunt</td>
<td>26,230,000</td>
<td>Apr-14</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>TBD</td>
<td>TBD</td>
<td>N/A</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Other Authorized Academic Division Projects, Near Term (through June 30, 2016)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilmer Hall and Chemistry Building Renovations - Programming and Concept Design</td>
<td>1,000,000</td>
<td>Apr-13</td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Gilmer Hall and Chemistry Building Renovations</td>
<td>1,000,000</td>
<td>Apr-13</td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Contemplative Sciences Center Facility</td>
<td>13,680,000</td>
<td>Apr-13</td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Alderson Library Renewal</td>
<td>120,000,000</td>
<td>Apr-13</td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>
MAJOR PROJECTS STATUS REPORT, FUTURE DESIGN ACTION AND PLANNING STUDIES
JANUARY 2014

<table>
<thead>
<tr>
<th>Project</th>
<th>Total</th>
<th>Working Budget</th>
<th>Project Approval</th>
<th>Scope</th>
<th>Concept/ Site/Design Guidelines</th>
<th>Architect/ Engineer Selection</th>
<th>Architect/ Address</th>
<th>Schematic Design</th>
<th>Contractor/ Address/ Contract Date</th>
<th>Construction Start</th>
<th>Complete</th>
<th>Comments/Update on Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAG School Addition</td>
<td>35,000,000</td>
<td></td>
<td>Apr-12</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>To US Congress for funding</td>
</tr>
<tr>
<td>Main Heat Plant Biomass</td>
<td>2,000,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Jefferson Grounds Initiative</td>
<td>125,000,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Subtotal Other Authorized Projects, Near</td>
<td>$ 490,574,814</td>
<td></td>
</tr>
</tbody>
</table>

Other Authorized Academic Division Projects, Long Term (July 1, 2016 - June 30, 2024)

<table>
<thead>
<tr>
<th>Project</th>
<th>Total</th>
<th>Working Budget</th>
<th>Project Approval</th>
<th>Scope</th>
<th>Concept/ Site/Design Guidelines</th>
<th>Architect/ Engineer Selection</th>
<th>Architect/ Address</th>
<th>Schematic Design</th>
<th>Contractor/ Address/ Contract Date</th>
<th>Construction Start</th>
<th>Complete</th>
<th>Comments/Update on Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-18 Maintenance Reserve</td>
<td>18,400,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>n/a, maintenance reserve</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>2016-20 Maintenance Reserve</td>
<td>19,500,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>n/a, maintenance reserve</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>2020-22 Maintenance Reserve</td>
<td>20,900,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>n/a, maintenance reserve</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>2022-24 Maintenance Reserve</td>
<td>21,900,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>n/a, maintenance reserve</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Rigby Building Addition Renovation</td>
<td>20,000,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Miller Center Phase III</td>
<td>24,820,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>University Conservation Center</td>
<td>1,500,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Slaughter Observatory Center Renovation/Addition</td>
<td>22,810,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Planning complete; on hold</td>
</tr>
<tr>
<td>Anderson-Bush Cancer Research Center - Phase II</td>
<td>6,080,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Science/Engineering Plant Expansion: AFC Chiller #6</td>
<td>6,650,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Health System Chiller Replacement/Expansion</td>
<td>21,500,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>North Grounds to Old Ivy Dualtrack</td>
<td>5,600,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Science and Engineering Teaching and Research Facility</td>
<td>347,200,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Pickles Kimball Fine Arts Library</td>
<td>18,710,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>New Music Building</td>
<td>59,320,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Demas Building: Phase II South Addition</td>
<td>23,470,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Physics Building Renewal</td>
<td>35,000,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Upperclass Housing</td>
<td>31,000,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Expanded Locker Substation</td>
<td>9,420,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Replace Hesford College Chillers</td>
<td>2,820,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Service Coplay Substation</td>
<td>5,960,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Memorial Gymnastics Renovation</td>
<td>21,360,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>New South Lawn Academic Building - Phase II</td>
<td>31,330,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Thornton Hall D-Wing and B-Wing renovation</td>
<td>27,340,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Central Grounds: Replace Bryan Hall Chiller #1</td>
<td>6,150,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Old Cabell Hall Restorals</td>
<td>65,900,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Science/Engineering Plant: Replace Chemistry Chillers</td>
<td>23,060,000</td>
<td></td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Subtotal Other Authorized Projects, Long Term</td>
<td>$ 723,289,000</td>
<td></td>
</tr>
</tbody>
</table>

Acad Div Major Capital Projects $ 1,480,420,032 program
MAJOR PROJECTS STATUS REPORT, FUTURE DESIGN ACTION AND PLANNING STUDIES
JANUARY 2014

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total ($K)</th>
<th>Approval Date</th>
<th>Working Budget</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battle Building at the UVA Children's Hospital</td>
<td>141,620,000</td>
<td>Apr-09</td>
<td>200,000 gsf new</td>
<td>n/a, UVA Foundation</td>
</tr>
<tr>
<td>UVA Foundation Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heep 1st Fl Radiology</td>
<td>21,212,000</td>
<td>Feb-08</td>
<td>improve and upgrade dept</td>
<td>n/a, ren, with no ext. impact</td>
</tr>
<tr>
<td>Heep 2nd Fl Surgical Path Lab</td>
<td>6,581,250</td>
<td>Feb-08</td>
<td>8,000 gsf rem</td>
<td>n/a, ren, with no ext. impact</td>
</tr>
<tr>
<td>Hospital Roof Replacement</td>
<td>4,400,000</td>
<td>Jun-09</td>
<td>86,000 gsf roof replacement</td>
<td>n/a, replacement with no exterior impact</td>
</tr>
<tr>
<td>Lee Street Entry and Consecutive Elements</td>
<td>30,305,500</td>
<td>Jun-06</td>
<td>Hospital plaza and edemplasse</td>
<td>May-07, May-07, Zennier-Oxen-Franz, Washington DC</td>
</tr>
<tr>
<td>Deferred Maintenance Umbrella: Hospital HVAC Phase II</td>
<td>28,000,000</td>
<td>Apr-09</td>
<td>N/A</td>
<td>May-12</td>
</tr>
<tr>
<td>Subtotal Authorized Projects Under Construction</td>
<td>233,138,750</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Authorized Medical Center Projects in Planning

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total ($K)</th>
<th>Approval Date</th>
<th>Working Budget</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deferred Maintenance 10 Year Plan Master - Loss Hospital Roof, HVAC, New Power, Vageted Roof</td>
<td>82,200,000</td>
<td>Apr-09</td>
<td>Umbrella</td>
<td>Umbrella</td>
</tr>
<tr>
<td>Deferred Maintenance Umbrella: Hospital Emergence Power Phase III</td>
<td>5,000,000</td>
<td>Apr-09</td>
<td>n/a, no exterior impact</td>
<td>Jun-12</td>
</tr>
<tr>
<td>Deferred Maintenance Umbrella: Hospital Vageted Roof Replacement</td>
<td>TBD</td>
<td>Apr-09</td>
<td>23,000 gsf roof replacement</td>
<td>TBD</td>
</tr>
<tr>
<td>University Hospital Renovations / Levels 7 & 8 (Umbrella Authorization)</td>
<td>20,000,000</td>
<td>Apr-13</td>
<td>N/A</td>
<td>Sep-13</td>
</tr>
<tr>
<td>Education Resource Center</td>
<td>29,860,000</td>
<td>Apr-13</td>
<td>revised: Nov-13</td>
<td>Feb-13</td>
</tr>
<tr>
<td>Subtotal Authorized Projects in Planning</td>
<td>137,169,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Past budget, scope, and design approval actions by the Board of Visitors highlighted in blue

- **TBD** until contract awarded
- **Interim finishes ongoing including flooring, ceiling, painting and casework installation. Exterior brick installation continues.**
- **Construction is 59% complete.**
- **Construction is 100% complete.**
- **Phase I construction is 99% complete. Phase II construction is 95% complete. Phase III construction is 98% complete.**
- **Project is 98% complete.**
- **Package I construction is 80% complete. Package II is 80% complete.**
- **Preliminary design is submitted on January 9, 2014.**
MAJOR PROJECTS STATUS REPORT, FUTURE DESIGN ACTION AND PLANNING STUDIES
JANUARY 2014

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total</th>
<th>Working Budget</th>
<th>Project Approval</th>
<th>Scope</th>
<th>Concept/ Site/Design Guidelines</th>
<th>Architect/ Engineer Selection</th>
<th>Architect/ Address</th>
<th>Schematic Design</th>
<th>Contractor/ Address/ Contract Start</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Authorized Medical Center Projects, Near Term (through June 30, 2016)</td>
<td>$7,600,000</td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Ambulatory Practice Space Renovations (UMC)</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Department and Operating Rooms Expansion</td>
<td>TBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Department and Operating Rooms - Utility Infrastructure</td>
<td>$8,000,000</td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Subtotal Other Authorized Projects, Near Term</td>
<td>$15,600,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med Care Major Capital Projects</td>
<td>$384,278,750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

University of Virginia, 246 - College at Wise

<table>
<thead>
<tr>
<th>Authorized College at Wise Projects Under Construction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Library</td>
<td>250,000</td>
<td>Apr-09</td>
<td>87,000 gsf</td>
<td>Sep-09</td>
<td>Jun-11</td>
<td>Common Design</td>
<td>Arlington VA</td>
<td>Review Feb-12 approval Feb-12</td>
<td>Quasemyer Big Store Cup VA</td>
<td>Jun-13</td>
</tr>
<tr>
<td>Health & Wellness Center and Gresley Gym Renovation</td>
<td>15,000,000</td>
<td>Apr-11</td>
<td>8,300,000 gsf</td>
<td>31,000 gsf HSW 6,000 gsf Gym</td>
<td>Jun-11</td>
<td>Sep-11</td>
<td>Train, Charlottesville, VA</td>
<td>review: Feb-12 approval: Feb-12</td>
<td>Earl Wil Construction</td>
<td>Bristol, TN</td>
</tr>
<tr>
<td>Subtotal Authorized Projects Under Construction</td>
<td>$52,368,250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Authorized College At Wise Projects in Planning

<table>
<thead>
<tr>
<th>Class Improvements</th>
<th>$2,515,144</th>
<th>Apr-11</th>
<th>Apr-09</th>
<th>N/A</th>
<th>Nov-11</th>
<th>Thompson & Litten, Wise, VA</th>
<th>Jun-13</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>Preliminary Design submitted to BCOM October 2013.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal Authorized Projects in Planning</td>
<td>$2,515,144</td>
<td></td>
</tr>
</tbody>
</table>

Other Authorized College at Wise Projects, Near Term (through June 30, 2016)

<table>
<thead>
<tr>
<th>Williams Library Conversion</th>
<th>8,700,000</th>
<th>Apr-13</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
<th>TBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal Other Authorized Projects, Near Term</td>
<td>$9,700,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Authorized College At Wise Projects, Long Term (July 1, 2016 - June 30, 2024)

<table>
<thead>
<tr>
<th>2016-18 Maintenance Reserve</th>
<th>1,200,000</th>
<th>Apr-13</th>
<th>n/a, maintenance reserve</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-20 Maintenance Reserve</td>
<td>1,200,000</td>
<td>Apr-13</td>
<td>n/a, maintenance reserve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020-22 Maintenance Reserve</td>
<td>1,500,000</td>
<td>Apr-13</td>
<td>n/a, maintenance reserve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022-24 Maintenance Reserve</td>
<td>1,700,000</td>
<td>Apr-13</td>
<td>n/a, maintenance reserve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Football Building</td>
<td>2,700,000</td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Percussion Theatre</td>
<td>34,000,000</td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Residence Hall IV</td>
<td>15,000,000</td>
<td>Apr-13</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Subtotal Other Authorized Projects, Long Term</td>
<td>$58,240,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WISC Major Capital Projects

| Program | $321,939,002 | | | | | | | | | |

UVA Major Capital Projects

| Program | $1,955,637,874 | | | | | | | | | |
University of Virginia
Current Capital Planning Studies

<table>
<thead>
<tr>
<th>Project</th>
<th>Inactive</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Division / Agency 207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Residence: "Sustainability House"</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Expansion to Aquatics Facility / Swim Team Facilities</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Contemplative Sciences Center</td>
<td></td>
<td>Studying Options / Fundraising</td>
</tr>
<tr>
<td>UVa Tennis Center</td>
<td></td>
<td>Studying Options</td>
</tr>
<tr>
<td>Darden Conference Center</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Psychology Research Facility</td>
<td></td>
<td>Studying Options</td>
</tr>
<tr>
<td>Student Health Center Addition</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Jeffersonian Grounds Initiative, I-IV</td>
<td></td>
<td>Fundraising</td>
</tr>
<tr>
<td>Medical Center / Agency 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health System Rehab & Recreation Building</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Psychiatry Clinic Building</td>
<td></td>
<td>Studying Options</td>
</tr>
<tr>
<td>University of Virginia / College at Wise / Agency 246</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
University Of Virginia
Architect/Engineer Selection for Capital Projects $5 Million or Less
Period Ended January 31, 2014

- There are no architect/engineer selections for capital projects $5M or less for the period ending January 31, 2014.
Professional and Construction-Related Non-Professional Services Contracts
Quarter Ended December 31, 2013

Professional Contracts by FY

<table>
<thead>
<tr>
<th>FY Period</th>
<th>Total Virginia Contracts</th>
<th>Total Out-of-State Contracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-2008</td>
<td>211</td>
<td>136</td>
</tr>
<tr>
<td>2008-2009</td>
<td>249</td>
<td>135</td>
</tr>
<tr>
<td>2009-2010</td>
<td>256</td>
<td>89</td>
</tr>
<tr>
<td>2010-2011</td>
<td>255</td>
<td>78</td>
</tr>
<tr>
<td>2011-2012</td>
<td>319</td>
<td>61</td>
</tr>
<tr>
<td>2012-2013</td>
<td>324</td>
<td>82</td>
</tr>
<tr>
<td>07/01/13 - 12/31/13 (FYTD)</td>
<td>119</td>
<td>29</td>
</tr>
</tbody>
</table>

FY Period
Professional and Construction-Related Non-Professional Services Contracts

Quarter Ended December 31, 2013

<table>
<thead>
<tr>
<th>FY Period</th>
<th>Total Virginia Contracts (M)</th>
<th>Total Out-of-State Contracts (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-2008</td>
<td>$8.3</td>
<td>$18.9</td>
</tr>
<tr>
<td>2008-2009</td>
<td>$10.4</td>
<td>$30.2</td>
</tr>
<tr>
<td>2009-2010</td>
<td>$10.5</td>
<td>$10.5</td>
</tr>
<tr>
<td>2010 - 2011</td>
<td>$7.2</td>
<td>$7.4</td>
</tr>
<tr>
<td>2011 - 2012</td>
<td>$10.1</td>
<td>$2.4</td>
</tr>
<tr>
<td>2012 - 2013</td>
<td>$6.7</td>
<td>$10.2</td>
</tr>
<tr>
<td>07/01/13 - 12/31/13 (FYTD)</td>
<td>$2.7</td>
<td>$4.3</td>
</tr>
</tbody>
</table>

Professional Contract Fees by FY

- **Red Bars**: Total Virginia Contracts (M)
- **Green Bars**: Total Out-of-State Contracts (M)
UNIVERSITY OF VIRGINIA
PAVILION OCCUPANCY STATUS
AS OF DECEMBER 2013

<table>
<thead>
<tr>
<th>Pavilion</th>
<th>Occupants</th>
<th>Assigned</th>
<th>Available</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Robert Pianta</td>
<td>Winter 2010</td>
<td>November 2018</td>
<td>Occupied Pavilion III from Spring 2008 until Winter 2010</td>
</tr>
<tr>
<td>II</td>
<td>Meredith Woo</td>
<td>September 2009</td>
<td>September 2014</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Harry Harding</td>
<td>Spring 2010</td>
<td>Spring 2015</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Larry J. Sabato</td>
<td>October 2002</td>
<td>Spring 2018</td>
<td>Extended an additional five years in November 2010, from Spring 2013 to May 11, 2018</td>
</tr>
<tr>
<td>V & Annex</td>
<td>Patricia Lampkin</td>
<td>Spring 2008</td>
<td>August 1, 2018</td>
<td>Occupied Pavilion III from Summer 2005 until Spring 2008</td>
</tr>
<tr>
<td>VI</td>
<td>Robert D. Sweeney</td>
<td>Fall 2012</td>
<td>Fall 2017</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Colonnade Club</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>John Colley</td>
<td>April 2011</td>
<td>April 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Gerald Warburg</td>
<td>March 2012</td>
<td>March 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Dorrie Fontaine</td>
<td>July 2011</td>
<td>July 2016</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Nancy E. Dunlap, M.D.</td>
<td>May 2013</td>
<td>November 2014</td>
<td></td>
</tr>
<tr>
<td>Montebello</td>
<td>James H. Aylor</td>
<td>April 2012</td>
<td>August 2015</td>
<td></td>
</tr>
<tr>
<td>Sunnyside</td>
<td>Artificial Pancreas</td>
<td>April 2013</td>
<td>March 2015</td>
<td></td>
</tr>
<tr>
<td>Weedon House</td>
<td>Carl P. Zeithaml</td>
<td>July 2011</td>
<td>July 2016</td>
<td></td>
</tr>
</tbody>
</table>
I. Background: As a part of its oversight of the University’s Capital Program, the Executive Review Committee for Capital Development stipulated in April 2004 that Post Occupancy Evaluations (POE) be completed for capital projects approximately one year after occupancy.

II. Purpose: The Post-Occupancy Evaluation (POE) process is a “lessons learned” exercise to improve the design, construction, operation, and user satisfaction of future buildings by providing an assessment of completed projects. It identifies architectural, engineering, interior, and other functional components that work well and those that are problematic. The process supports the University’s Leadership in Energy and Environmental Design (LEED) program by addressing the LEED credit requiring a survey of occupant satisfaction with thermal comfort.

III. Methodology: Information was gathered through 1) a web-based survey distributed to faculty, staff, and students, 2) an assessment by the maintenance staff, and 3) a post-survey meeting. The evaluation was led by a team consisting of the Senior Program Manager and Senior Preservation Planner from the Office of the Architect for the University, the Senior Academic Facility Planner from the Office of the Executive Vice President and Provost, the Supervisory Historic Preservation Architect and the Associate Director for Work Management for Facilities Management, and the Associate Dean for Management and Finance for the Frank Batten School of Leadership & Public Policy. Review and guidance were provided by the Architect for the University, the Chief Facilities Officer, and the University Building Official.

IV. Project Description: The Garrett Hall Renovation Project created a home for the Frank Batten School of Leadership and Public Policy. The building is located west of the Lawn and south of the West Range. It forms the north edge of the quad bounded by Cocke Hall, McIntire Amphitheater, and Minor Hall. The building consists of 25,400 gross square foot (GSP). The main building section, a 16,700 GSF structure, was built in 1908 as the University’s first large dining hall. In 1959, it was converted to office use. In 1970, an annex was added on the east side. The scope of work addressed structural deficiencies and code requirements, provided new mechanical systems, restored the original main dining room as a central meeting space, reconfigured the remaining interior spaces for offices and meeting rooms, and made exterior repairs. Construction began in October 2009 and was completed in July 2011. The project received a LEED Gold certification.

V. Survey Response Rate: The survey was distributed to 204 faculty, staff, and students. There were 80 respondents for a 39% response rate. Respondents included 16 faculty, 51 students, and 13 staff.

VI. Overall Building Assessment: From the perspective of the Frank Batten School of Leadership and Public Policy, the Garrett Hall renovation project has been a success. The central location, historical character, and inviting layout of the building have contributed to the brand new school’s success in
establishing its presence within the University community. While Garrett Hall has served the school well through its formative years, as Batten expands and diversifies its offerings the size of the building will become a constraint.

97% of respondents have a positive impression of the building. 1% has no opinion, and 1% has a negative impression. The student positive response rate is 100%, the faculty rate is 94%, and the staff rate is 92%.

Garrett has six program areas: 1) the Great Hall; 2) the Commons 3) Seminar Room; 4) Conference Rooms A, B, C, and D; 5) the Atrium; 6) offices and workspaces. The conference rooms receive the highest positive response rate of 96% for overall room function, the Commons a 93% rate, the Great Hall a 92% rate, the Atrium a 90% rate, the Seminar Room an 87% rate, and the offices/workstations a 69% rate. Negative response rates range from 0% to 6%.

Safety does not appear to be an issue. 92% of respondents indicate they feel safe in the building; 5% indicate they do not. 89% indicate they feel safe in the areas around the building; 5% indicate they do not.

VII. Summary of Evaluation Findings

A. Program Areas: Garrett Hall has 6 program areas: 1) The Great Hall; 2) The Commons; 3) The Seminar Room; 4) Conference Rooms; 5) The Atrium; and 6) Offices and Workstations.

1. The Great Hall: This was the original main dining room. The room was to be designed to support a variety of functions, such as lectures and receptions, and to provide students with study space when the room was not being used for a function. 92% of respondents indicate that it functions well; 5% indicate it does not.

Positive response rates are 85% (furniture), 84% (audiovisual systems), 76% (sound privacy) and 59% (acoustics). Negative response rates are 27% (acoustics), 14% (audiovisual systems), 8% (sound privacy) and 8% (furniture). Based on the survey responses and comments, acoustics and student use appear to be the main issues with this space.

For acoustics a staff member notes, “The acoustics of The Great Hall is the main weakness of the space. There have been multiple presentations in the Great Hall where the people sitting in the back have a really hard time hearing the speaker."

Faculty, staff and students note that the room is not being used frequently as a student study space. One faculty member notes “This room is not used by students as a regular gathering point as we envisioned.” A staff member notes “In between lectures and receptions, the space is very poorly utilized.” Student comments indicate that the lack of use may be due to the failure to promptly reconfigure the space after an event is over. One student notes “The Great Hall should be immediately reconverted to study space when events are completed...”

The comments indicate that the Atrium and Conference Rooms A, B, C, and D have been more successful as student study and meeting spaces.

2. The Commons: 93% of respondents indicate that this room functions well for meetings and lectures; 4% indicate it does not.
Positive response rates are 97% (acoustics), 96% (audiovisual systems), 89% (furniture) and 85% (sound privacy). Negative response rates are 6% (sound privacy), 3% (audiovisual systems), 3% (furniture) and 1% (acoustics).

3. **Seminar Room:** 87% of respondents indicate that this room functions well for meetings; 6% indicate it does not. Positive response rates are 92% (acoustics), 90% (sound privacy), and 89% (audiovisual systems). Negative response rates are 4% (audiovisual systems), 3% (sound privacy), and 0% (acoustics). Respondents indicate that this room is not conducive for teaching. A faculty member notes, "The room is awkward. Because it is so long, the use of the whiteboard is either very limited or klutzy. It is an awkward room to teach in." A student notes, "The setup of the seminar room is too much like a board room. People sitting on one end of the table have a hard time hearing and paying attention to the people sitting on the opposite end of the table. The Seminar Room is great for meetings, but not for classes or discussions."

4. **Conference Rooms A, B, C, and D:** 96% of respondents indicate that these rooms function well; the negative response rate is 0%. The positive response rate for the usefulness of the four person rooms is also 96%; 1% indicate that they are not useful. Comments reinforce the success of these rooms. "It appears as though the student conference rooms get a tremendous amount of use, which is fantastic." "I appreciate the access to such comfortable, convenient work space with advanced amenities!" "we could use more of these rooms!"

Positive response rates are 90% (technology), 85% (sound privacy), and 42% (room availability). Negative response are 33% (room availability), 10% (sound privacy), and 3% (technology). Given the popularity of these spaces, scheduling is an issue. A faculty member notes, "scheduling the conference rooms can be really challenging, which is frustrating." A student suggests, "It would be great if Batten can put together an online calendar (linked to a touch panel - a tool similar to that of Rouss and Robertson Hall (the McIntire School Building)) where students and/or groups can book the conference room for meetings. This could 1) save the Business Office from printing out daily sheets of paper; 2) make it more convenient for Batten students, faculty, and staff to book a room; and 3) allow users of the conference rooms to plan accordingly."

5. **The Atrium:** The atrium was intended to provide gathering and study space for students. 90% of respondents indicate that this space functions well; 4% indicate it does not. Positive response rates are 87% (furniture) and 80% (acoustics). Negative response rates are 9% (acoustics) and 3% (furniture). Comments indicate that this space is well used. "Huge success!" "I’m not down here often but as a light user of the space, it appears to be great. I enjoy walking through there during the day and finding it full of working/lounging students. Awesome for school culture!" "I sit just off the atrium and there is constant energy in...this space."

Several respondents provide suggestions for furniture improvements. "could use more comfortable furniture, especially since students are around there all the time," Staff also note the lack of flexibility. "seating area could have been more flexible. Whiteboards and other technology could have been added..."
to accommodate small group work and LARGE group functions including viewing and speaker events for students.”

6. Offices and Workstations: Offices and workstations have low positive response rates. 69% of respondents indicate that their individual offices or workstations function well; 4% indicate they do not. Positive response rates are 72% (office layout) and 57% (sound privacy). Negative response rates are 18% (sound privacy) and 4% (office layout). Sound privacy is an issue. A faculty member notes “Sound from the room next door is so loud that I need to put one white noise to concentrate.” A staff member states, “with respect to the office space, it is relatively easy to hear conversations occurring in the next room throughout the basement, even when doors are closed, as few of the partition walls go to the ceiling.” Students are also concerned with the lack of sound privacy. A student notes, “Individual offices have thin walls. It’s important to lower your voice when you are saying something confidential.”

B. LEED Certification: The survey included a question about the importance of the building’s LEED certification. 81% of respondents indicate that it is important; 9% have no opinion, and 9% indicate that it is not important.

C. Building Temperatures: Based on the survey results Garrett Hall meets the requirements of the thermal comfort verification credit for the U.S. Green Building Council’s LEED certification program. The credit stipulates that a corrective action plan is to be developed if more than 20% of the building occupants are dissatisfied with the building’s thermal comfort. The negative rate for the project is 8%

VIII. Energy Cost Analysis
As a part of the Post Occupancy Evaluation Process, a cost-per-square-foot energy analysis was conducted comparing Garrett Hall to recently constructed buildings with similar office/classroom use:

1. Bavaro Hall (LEED Gold)
2. South Lawn (LEED Gold)
3. Claude Moore Nursing Education Building (not LEED certified)
4. Ruffin Hall (not LEED certified)
5. Rouss-Robertson Halls (not LEED certified)

The analysis covered the 12-month period from November 1, 2012 through October 30, 2013, and included chilled water, electricity, and hot water/steam. The total annual energy costs per GSF were:

1. South Lawn (LEED Gold) $1.45
2. Garrett Hall (LEED Gold) $2.41
3. Rouss-Robertson $2.61
4. Bavaro Hall (LEED Gold) $3.22
5. Claude Moore Nursing Education Building $3.38
6. Ruffin Hall $3.74

Of the six buildings, Garrett Hall had the second-lowest electricity cost per GSF, the second-lowest chilled water cost per GSF, and the third-lowest medium temperature hot water/steam cost per GSF.
IX. Actions and Recommendations

A. Offices and Workstations – Sound Privacy: Sound privacy in the offices and workstations receives a 57% positive response rate and an 18% negative response rate. Respondents provide 17 negative sound privacy comments. One notes, "The hallways are extremely loud, and when people are in the hallwars or the atrium it can be disruptive to work in the office." Another notes, "Very dissatisfied with sound privacy, as most of the partition walls do not go all the way up to the ceiling." The Associate Dean for Management and Finance indicates that these complaints pertain to the offices in the annex and not those in the original building.

Action (Corrective): Door sweeps have been added to many interior doors. In addition, during the summer of 2014 insulation will be placed over the drop ceilings above the annex offices as a part of the window and skylight project.

Recommendations (For Future Buildings): Future projects should require the soundproofing of office walls and ceilings.

B. Building Temperature: Even though 89% of respondents are satisfied with the building temperatures, 16% indicate that the temperatures interfere with their work. There are also 26 negative temperature comments. Some note that the building is cold; others indicate that the temperatures are not consistent from room to room and that they fluctuate during the day.

Action (Corrective): After the building opened it was discovered that the HVAC hot and cold water connections were reversed. This has been corrected. The Associate Dean reports that he has not received a temperature complaint in over six months.

Recommendations (For Future Buildings): The major temperature problem in Garrett Hall was due to an inadvertent construction error. Therefore, there are no appropriate recommendations that can be made for future buildings.

C. The Great Hall – Acoustics: The acoustics in this room receive a 59% positive response rate and a 27% negative rate. Respondents also provide 16 negative comments.

Corrective Action: The Batten School has resolved this problem by reprogramming the A/V system and by adjusting the positioning of the speakers and acoustic panels.

Recommendations for Future Buildings: The design phase of renovation projects should include the acoustic testing in existing lecture halls or large meeting spaces that are to remain rather than relying solely on computer modeling.

D. The Great Hall – Furniture: While this room was programmed to provide student study space in between lectures and receptions, comments indicate that it is use by students is limited. It appears that the furniture is not promptly reconfigured for student use after the other functions.
Corrective Action: The furniture in the Great Hall is being reconfigured more quickly now that the Batten School has contracted with the Newcomb Hall moving staff. In addition, it will replace the existing tables with tables that are easier to remove and store.

Recommendations for Future Buildings: The reconfiguration of the Great Hall was discussed by the project during the design of Garrett. It was acknowledged that it could be problematic. The Garrett Hall experience demonstrates that the planning of projects with multiuse spaces needs to be very rigorous and realistic. In addition, adequate storage furniture space and flexible furniture should be provided.
I. **Background:** As a part of its oversight of the University’s Capital Program, the Executive Review Committee for Capital Development stipulated in April 2004 that Post Occupancy Evaluations (POE) be completed for capital projects approximately one year after occupancy.

II. **Purpose:** The Post-Occupancy Evaluation (POE) process is a “lessons learned” exercise to improve the design, construction, operation, and user satisfaction of future buildings by providing an assessment of completed projects. It identifies architectural, engineering, interior, and other functional components that work well and those that are problematic. The process supports the University’s Leadership in Energy and Environmental Design (LEED) program by addressing the LEED credit requiring a survey of occupant satisfaction with thermal comfort.

III. **Methodology:** Information was gathered through a web-based survey distributed to faculty, staff, and students, a maintenance staff assessment, and a post-survey meeting with the evaluation team. The team consisted of the Senior Program Manager from the Office of the Architect for the University, the Director of Bands, the Assistant Director of Bands, the Director of Space Planning & Management for the College and Graduate School of Arts & Sciences, the Senior Academic Facility Planner from the Office of the Executive Vice President and Provost, and the Associate Director for Work Management for Facilities Management. Review was provided by the Architect for the University, the Chief Facilities Officer, and the University Building Official.

IV. **Project Description:** The Hunter Smith Band Building is a two story structure encompassing 18,551 gross square foot (GSF). It is located in the Betsy and John Casteen Arts Grounds on the north side of Culbreth Road opposite Ruffin Hall. The building houses the University Bands, which include the Cavalier Marching Band, the HOOps Band, the Olympic Sports Band, the Concert Band, and the Wind Ensemble. Its principal spaces include the William E. Pease Rehearsal Hall, a smaller rehearsal space, two small practice rooms, storage rooms for instruments and uniforms, a library, reception area, and offices. Construction began in December 2009 and was completed in August 2011. The project received a LEED Gold certification.

V. **Survey Response Rate:** The survey was distributed to 19 faculty, staff, and students. There were 14 respondents for a 74% response rate. Respondents included 2 faculty, 4 staff, and 8 students.

VI. **Overall Building Assessment:** 100% of respondents have an overall positive impression of the building. 56% of the survey’s questions have positive response rates ranging from 92% to 100%. 20% have negative response rates that exceed 10%.

The building has eight program areas: 1) William E. Pease Rehearsal Hall; 2) Rehearsal Room 108; 3) Drum and Tuba Storage Room; 4) Small Instrument Storage Room; 5) Uniform Storage Room; 6) Reception Area (including a copy room); 7) Offices / Workstations; and 8) library / meeting room.
The survey questions address the overall functionality of each program area and the adequacy of specific room features, such as acoustics, sound privacy, A/V systems, lighting, window shades, instrument shelving, and library shelving.

The rehearsal rooms and storage rooms receive 100% positive response rates for overall functionality. The copy room, offices / workstations, library and reception area receive positive rates ranging from 77% to 85%. Of the specific room features, acoustics, lighting, and instrument shelving are the most successful. The least successful are sound privacy, window shades, AV systems, and library shelving.

Primary issues appear to be low light levels in the Uniform Storage Room, a lack of sound privacy in the reception area and offices, inadequate window shades in the Pease Rehearsal Hall, the A/V system in the Pease Rehearsal Hall, and the shelving in the library which is sagging under the weight of the music CDs.

100% of respondents indicate that they feel safe in the building. 71% indicate that they feel safe in the areas around the building; 14% (2 of 14 respondents) indicate that they do not. In recent surveys for Garrett Hall, Balz-Dobie House, and Watson Webb House the negative response rates for the exterior safety question range from 5% to 8%. The 14% negative response rate for the Band Building is a bit puzzling given that Culbreth Road is well lit. Of the two individuals who indicate that they feel unsafe, one is a student and the other is a staff member.

VII. LEED Certification
The survey includes a question about the importance of the building’s LEED certification. 93% of respondents indicate that it is important; 7% indicate that it is not important.

VIII. Building Temperatures
The thermal comfort verification credit for the U.S. Green Building Council’s LEED certification program stipulates that a corrective action plan be developed if more than 20% of the occupants are dissatisfied with the building’s thermal comfort. 29% of the Band Building’s respondents indicate that they are dissatisfied with the temperatures. While one student comments that the women’s bathroom is colder than the rest of the building, most comments indicate that the temperatures in the rehearsal rooms, especially the Pease Rehearsal Hall, are hot at night when the entire band is practicing. Another respondent comments that it is difficult to consistently control the temperatures with the thermostats.

The level of dissatisfaction appears to be minimal. Those respondents expressing dissatisfaction indicate that they are only somewhat dissatisfied with the temperatures. There are no dissatisfied or very dissatisfied responses. Also, even though 29% of the respondents indicate they are dissatisfied with the temperatures, only 7% indicate that the temperatures interfere with their use of the building.

At the post-survey meeting, the Director of Bands and the Assistant Director stated that from their experience they do not believe the temperatures in the building interfere with its use. They noted that the temperature in the Pease Rehearsal Hall has improved each year since the building opened three years ago. It also appears that the temperature spikes occur near the
beginning of the practice sessions where all 300 + band members are present and seems to slowly cool down. Based on this observation, it appears that the HVAC system takes a while to respond to the sudden increase in the heating load. The temperature spikes are probably exacerbated by the fact the rehearsal hall was designed to accommodate 250 to 275 band members and not the current 300 +.

Facilities Management is investigating the temperature problems including the intermittent whistling sound that seems to be due to positive air pressure. Its initial determination was that the temperature problems in the Pease Rehearsal Hall could not be corrected because its ductwork is located some 45 feet above the hall’s floor; this determination is currently under review. Facilities Management is taking steps to correct the positive air pressure problem.

IX. Energy Cost Analysis
The energy consumption records for the Hunter Smith Band Building do not appear to be reliable, and, therefore, it is not possible to complete a relevant energy consumption analysis for the building. In particular, heating energy values appear to be an order of magnitude above normal and do not exhibit expected variation.

X. Actions and Recommendations
A. Uniform Storage Room - Lighting: The negative response rate for the lighting question for this space is third highest out of 36 questions on the survey; its positive rate is the fifth lowest. The maintenance assessment notes that “there are no fixtures present in this area to illuminate the personal identification of clothing.”

Action (Corrective): Upgrade the lighting at the uniform storage racks as funding becomes available.

Recommendations (For Future Buildings): Not applicable.

B. William Pease Rehearsal Hall - Lighting: Of the six questions that were asked about the Rehearsal Hall, the lighting and window shade questions receive the highest negative response rates (14%). Low light levels and uneven light distribution make it difficult to read sheet music in this space.

Action (Corrective): Upgrade the lighting as funding becomes available.

Recommendations (For Future Buildings): Not applicable.

C. William E. Pease Rehearsal Hall - Window Shades: As noted above, the shades receive a 14% negative response rate. Faculty comments indicate that the shades do not darken the room sufficiently. The maintenance assessment notes that “The sunshade material is a white semi-transparent material. It is not effective in blocking out the exterior sunlight in the Pease Rehearsal Hall for showing a video.”

Corrective Action: Replace the shades with non-transparent shades as funding is available. There are non-transparent shades with a white backing. They would significantly reduce the amount of natural light while maintaining a white appearance on the exterior of the building.
Recommendations for Future Buildings: Provide shade control measures based on sun studies that take sun angle and building orientation into account.

D. The Reception Area and Adjacent Offices - Sound Privacy: The positive and negative responses for the sound privacy question are at odds with each other; the question has the survey’s lowest positive response rate while at the same time having only a 10% negative rate. Comments, however, indicate that the lack of sound privacy in these spaces is a problem. It is not just an issue of hearing practice session sounds. Occupants hear footsteps from the floor above, conversations from adjacent spaces, etc.

Corrective Action: Enhance the sound proofing in the offices and reception area as funding is available.

Recommendations for Future Buildings: Projects should be designed with adequate soundproofing in office / workspace and reception area walls and ceilings.

E. Rehearsal Hall Doors: During heavy driving rains, water enters the rehearsal hall under the exterior doors and flows in an adjacent floor register. There is a canopy over the doors. Although covers a large area, its height above the pavement allows rain to beat against the glass doors during storms accompanied by high winds.

Corrective Action: Given the entry terrace grading and the height of the canopy there is nothing that can be done. Even though this is an undesirable condition, it does not appear to doing any damage.

Recommendations for Future Buildings: The design of building entrances should include canopies that prevent water from beating against entry doors and grading that directs water away from the doors.

F. Window Cleaning: The need for window cleaning was raised during the post-survey meeting. The Director for Work Management noted that windows are cleaned every seven years in conjunction with the re-painting of a building’s exterior trim. Given the amount of glass in the rehearsal hall and the multipurpose room, the Band staff is concerned about the appearance of windows if the glass is not cleaned for seven years.

Corrective Action: There is no corrective action.

Recommendations for Future Buildings: Project teams for buildings that are being designed with extensive glass surfaces should be aware that under the current maintenance program windows and exterior glass surfaces are only cleaned every 7 years.

G. Bluestone Flooring: The bluestone flooring in the building was not sealed in order to maintain a matte finish and avoid a glossy appearance. Even though significant effort is put into protecting the floor, there are some stains and scuff marks on the stone.

Corrective Action: Given the desire to maintain a matte finish there is nothing that can be done but to continue the current practices.
Recommendations for Future Buildings: Future projects with stone flooring should consider the use of a sealer if the building occupants want to prevent stain and scuff marks.
I. Background: As a part of its oversight of the University’s Capital Program, the Executive Review Committee for Capital Development stipulated in April 2004 that Post Occupancy Evaluations (POE) be completed for capital projects approximately one year after occupancy.

II. Purpose: The Post-Occupancy Evaluation (POE) process is a “lessons learned” exercise to improve the design, construction, operation, and user satisfaction of future buildings by providing an assessment of completed projects. It identifies architectural, engineering, interior, and other functional components that work well and those that are problematic. The process supports the University’s Leadership in Energy and Environmental Design (LEED) program by addressing the LEED credit requiring a survey of occupant satisfaction with thermal comfort.

III. Methodology: Information was gathered through 1) a web-based survey distributed to student residents and student resident advisors and 2) an assessment by the maintenance staff. The team for this evaluation consisted of the Senior Program Manager and Assistant University Architect from the Office of the Architect for the University and the Director of Business and Facilities for the Housing Division. Review and guidance were provided by: the Associate Dean of Students / Executive Director of Housing & Residence Life; the Associate Vice President for Business Operations; the Architect for the University; the Chief Facilities Officer; and the University Building Official.

IV. Project Description: Balz-Dobie House is a first year residence hall located in the Alderman Road Residence Area. The building accommodates 220 first year students and 11 resident advisors. It is located on McCormick Road between the Ern Commons and Kellogg House. Balz-Dobie provides 1) residence rooms, 2) resident advisor rooms, 3) student study rooms, floor lounges, and a first floor commons room, and 4) an apartment for a senior resident advisor. Construction began in June 2009 and was completed in August 2011. The project received LEED Silver certification.

V. Survey Response Rate: The survey was distributed to 458 individuals. The survey pool included student residents and resident advisors from the 2011-2012 and 2012-2013 academic years. There were 115 respondents for a 25% response rate.

VI. Overall Building Assessment: 99% of respondents have a positive impression of the building. In the survey's recommendation section one respondent noted "I wouldn’t really change anything. It was a great dorm!" Of the building’s four main program spaces, student rooms receive a 97% positive response rate for overall room function, floor lounges a 96% rate, study rooms a 95% rate and the first floor commons a 91% rate. Negative response rates for the overall functioning of these spaces range from 0% to 2%. While there are negative comments about the study rooms, lounges, and commons, positive comments outnumber negative comments, and indicate that students value these spaces. One student notes, "Having one common room per
floor is a great idea and it really helped to bring the floor together as a community.”

The lawn and paved areas receive positive response rates of 75% and 71% respectively with six respondents noting the importance of open lawn areas for recreation. While these rates are lower than those for the program areas, the adjacent sites were still under construction at the time of survey and limited the amount of available open space. Safety does not appear to be an issue. 97% of respondents indicate that they feel safe inside the building; 3% indicate they do not. 92% indicate that they feel safe outside the building; 5% indicate they do not.

VII. Summary of Evaluation Findings
A. Program Areas
1. Residence Rooms: 97% of respondents indicate that these function well; 2% indicate that they do not. Sound privacy is noted as an issue for resident advisors whose rooms are adjacent to the floor lounges. Positive response rates for lighting, occupancy sensors, air quality, temperature, and sound privacy are in the 81% to 90% range. The positive response rate for impact of temperature on room use is 78%.
2. First Floor Commons Space: This area provides residents with access to a large television, sitting area, several desks, and kitchen space. 91% of respondents indicate that the Commons functions well; 2% indicate it does not. 73% of respondents indicate that they frequently use the Commons; 25% indicate they do not. One student notes “It was a good space, but a little underused, since there were lounges on every floor and the first floor one isn’t really a room so much as a big open space.” Positive response rates for furnishings, temperature, air quality, and lighting are in the 85% to 90% range.
3. Study Rooms: 95% of the respondents indicate that these rooms function well; 0% indicates they do not. 82% indicate that they frequently use the study rooms; 18% indicate they do not. Some respondents note that sounds from adjacent rooms and hallways can be heard in the study rooms, but only one respondent indicates that it is distracting. The positive response rate for lighting is 92%. The positive response rates for air quality, temperature, temperature impact, and sound privacy are in the 80% to 86% range.
4. Floor Lounges: The floor lounges serve as multipurpose rooms for watching TV or movies, playing video games, hosting meetings, and for resident advisor hall programs. 96% of the respondents indicate that the lounges function well; 2% indicate they do not. 85% indicate that they frequently use these rooms; 15% indicate they do not. Positive response rates for lighting, temperature impact, air quality, temperature, and sound privacy are in the 84% to 92% range.

B. LEED Certification: The survey included a question about the importance of the building’s LEED certification. 72% of the respondents indicate that it is important, 15% have no opinion, and 13% indicate that it is not important.

C. Thermal Comfort Verification: The thermal comfort verification credit for the U.S. Green Building Council (USGBC) LEED certification program stipulates that a corrective action plan is to be developed if more than 20% of a building’s occupants are dissatisfied with the building’s thermal comfort. Balz-Dobie meets
the requirement of this credit. Temperature questions were asked for the building’s four program spaces. The negative response rates range from a low of 4% to a high of 10%.

Student residence rooms have the lowest positive response rate and the highest negative response rate for temperature satisfaction. They also have the lowest positive response rate and the highest negative response rate for temperature impact on use of the room. One individual notes “Students should have more accurate temperature controls so that they don’t have to open windows in the winter.”

VII. Energy Cost Analysis: As a part of the Post Occupancy Evaluation process, a cost-per-square-foot energy analysis was conducted comparing three recently constructed residence halls:

Balz-Dobie House
Watson-Webb House
Kellogg House

The analysis covered a 12-month period from November 1, 2012 through October 30, 2013, and included chilled water and electricity. A reliable, twelve-month record of hot water/steam use was not available due to meter damage. The total annual energy costs per GSF were:

<table>
<thead>
<tr>
<th>Building</th>
<th>Cost (in $/GSF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balz-Dobie (LEED Silver)</td>
<td>$1.53*</td>
</tr>
<tr>
<td>Watson-Webb House (LEED Silver)</td>
<td>$1.47*</td>
</tr>
<tr>
<td>Kellogg House (Build prior to LEED certification requirement)</td>
<td>$1.85*</td>
</tr>
</tbody>
</table>

*Total cost for Chilled Water and Electricity only.

All three buildings have similar costs for electricity, ranging from $0.89/ GSF for Watson-Webb to $0.96/ GSF for Kellogg. But at $0.90/ GSF, chilled water costs for Kellogg were approximately 50% higher than Balz-Dobie and Watson-Webb ($0.64 and $0.58, respectively).

IX. Actions and Recommendations

A. Water Fountains: There were no survey questions about water fountains. Respondents, however, provide 2 comments and 14 recommendations about having more water fountains. The typical comment is that there should be fountains or water bottle refill stations on each floor. One student states: “It was annoying having to go downstairs to get water, especially living on the 6th floor. (Water bottles and pitchers don't fit under the faucet in the bathroom).”

Action: Explore the feasibility of installing water fountains or water bottle refill stations on each floor.

Recommendations (For Future Buildings): Consider the installation of at least one water fountain and/or water bottle refill station on each floor.

B. Common Spaces (First Floor Commons, Study Rooms and Floor Lounges): Respondents repeatedly indicate that these spaces are successful and that they help create a sense of community. The First Floor Commons was not quite as successful as the study rooms and lounges. One respondent notes that it was difficult to use the TV because the
commons is such a high traffic area. Another respondent suggests that more tables for laptops or group work would be beneficial. One respondent writes, “It was a large space that could have become a hangout for those living in the dorm, but was rarely used for anything besides another common room.”

Action: Explore different furniture configurations to improve the use of the first floor Commons.

Recommendations (For Future Buildings): Continue to provide a range of common spaces, such as floor lounges and study rooms, since these spaces create a sense of community by providing settings that increase student interactions. Investigate programming options for large common spaces.
I. **Background**: As a part of its oversight of the University’s Capital Program, the Executive Review Committee for Capital Development stipulated in April 2004 that Post Occupancy Evaluations (POE) be completed for capital projects approximately one year after occupancy.

II. **Purpose**: The Post-Occupancy Evaluation (POE) process is a “lessons learned” exercise to improve the design, construction, operation, and user satisfaction of future buildings by providing an assessment of completed projects. It identifies architectural, engineering, interior, and other functional components that work well and those that are problematic. The process supports the University’s Leadership in Energy and Environmental Design (LEED) program by addressing the LEED credit requiring a survey of occupant satisfaction with thermal comfort.

III. **Methodology**: Information was gathered through 1) a web-based survey distributed to student residents and student Resident Advisors and an assessment by the maintenance staff. The team for this evaluation consisted of the Senior Program Manager and Assistant University Architect from the Office of the Architect for the University and the Director of Business and Facilities for the Housing Division. Review and guidance were provided by: the Associate Dean of Students / Executive Director of Housing & Residence Life; the Associate Vice President for Business Operations; the Architect for the University; the Chief Facilities Officer; and the University Building Official.

IV. **Project Description**: Watson-Webb House is a first year residence hall located in the Alderman Road Residence Area. The building accommodates 200 first year students and 11 resident advisors. It is located on McCormick Road between the Ern Commons and Lile-Maupin House. Watson-Webb provides 1) residence rooms, 2) resident advisor rooms, 3) student study rooms, floor lounges, and a first floor commons rooms, and 4) an apartment for a senior resident advisor. Construction began in June 2009 and was completed in August 2011. The project received LEED Silver certification.

V. **Survey Response Rate**: The survey was distributed to 418 individuals. The survey pool included student residents and resident advisors from the 2011-2012 and 2012-2013 academic years. There were 107 respondents for a 26% response rate.

VI. **Overall Building Assessment**: 99% of respondents have a positive impression of the building. Of the building’s four main program spaces, student rooms receive a 97% positive response rate for overall room function, study rooms a 96% rate, floor lounges a 93% rate, and the first floor commons an 88% rate. Negative response rates for the functionality of these spaces range from 1% to 3%. 78% of respondents indicate that they frequently use the study rooms and the floor lounges; 64% indicate that they frequently use the first floor commons. While there are negative comments about the study rooms, lounges, and commons, positive comments outnumber negative comments, and indicate that students value these spaces. Examples of these comments
are: "6th floor study room and more frequently first floor study rooms were essential to my first year life. I did so much work in those rooms and spent so much time with friends in there. Invaluable aspect to new dorms." "These (lounges) were great for Hall bonding and hanging out with people together." "More study rooms."

The lawn and paved areas receive positive response rates of 64% and 65% respectively with four respondents noting the importance of open lawn areas for recreation. While these rates are lower than those for the program areas, the adjacent sites were under construction at the time of survey and limited the amount of available open space.

Safety does not appear to be an issue. 98% of respondents indicate that they feel safe in the building; 2% indicate they do not. 93% indicate that they feel safe outside the building; 8% indicate they do not.

VII. Summary of Evaluation Finding
A. Program Areas

1. Residence Rooms: 97% of respondents indicate that these function well; 2% indicate they do not. Sound privacy receives the lowest positive response rate of 74% and the highest negative response rate of 19%. Positive response rates for lighting, room temperature, occupancy sensors, impact of temperature on room use, and air quality are in the 78% to 87% range.

2. First Floor Commons Space: This area provides residents with access to a large television, sitting area, several desks, and kitchen space. 88% of respondents indicate that the Commons functions well; 3% indicate it does not. 64% indicate that they frequently use the Commons; 32% indicate they do not. Positive response rates for furnishings, temperature impact on room use, lighting, and temperature are in the 80% to 91% range. The positive response rate for air quality is 74%. The positive response rate sound privacy is 63%.

3. Study Rooms: 96% of the respondents indicate that the study rooms function well; 1% indicates they do not. 78% indicate that they frequently use the study rooms; 21% indicate they do not. Some respondents note that sounds from adjacent rooms and hallways can be heard in the study rooms; of the eight negative comments (there was also one positive comment) four appear to relate to the moveable wall that separates two of the first floor study rooms. The positive response rates for lighting, temperature impact on room use, and temperature are in the 81% to 87% range. The rates for air quality and sound privacy are 71% and 69% respectively.

4. Floor Lounges: Floor lounges serve as multipurpose rooms for watching TV or movies, playing video games, hosting meetings, and for resident advisor hall programs. 93% of the respondents indicate that the lounges function well; 1% indicates they do not. 78% indicate that they frequently use these rooms; 16% indicate that they do not. Positive response rates for temperature, temperature impact on room use and lighting are in the 83% to 87% range. The rates for air quality and sound privacy are 75% and 74% respectively.

B. LEED Certification: The survey included a question about the importance of the building’s LEED certification. 62% of the respondents indicate that it is important, 13% have no opinion, and 25% indicate that it is not important.

C. Thermal Comfort Verification: The thermal comfort verification credit for the U.S. Green Building Council (USGBC) LEED
certification program stipulates that a corrective action plan is to be developed if more than 20% of a building’s occupants are dissatisfied with the building’s thermal comfort. Watson-Webb meets the requirement of this credit. Temperature questions were asked for the building’s four program spaces. The negative response rates range from a low of 1% to a high of 12%.

For the temperature satisfaction question, student rooms receive the highest negative response rate, but also have the second highest positive response rate. It could be that students have stronger opinions about their room temperatures because of the amount of time they spend in these spaces. The rooms also have the lowest positive response rate and the highest negative response rate for the impact of temperature on room use.

VIII. Energy Cost Analysis: As a part of the Post Occupancy Evaluation process, a cost-per-square-foot energy analysis was conducted comparing three recently constructed residence halls:

Balz-Dobie House
Watson-Webb House
Kellogg House

The analysis covered a 12-month period from November 1, 2012 through October 30, 2013, and included chilled water and electricity. A reliable, twelve-month record of hot water/steam use was not available due to meter damage. The total annual energy costs per GSF were:

Balz-Dobie (LEED Silver) $1.53*
Watson-Webb House (LEED Silver) $1.47*
Kellogg House (Build prior to LEED certification requirement) $1.85*

*Total cost for Chilled Water and Electricity only.

Al three buildings have similar costs for electricity, ranging from $0.89/GSF for Watson-Webb to $0.96/GSF for Kellogg. But at $0.90/GSF, chilled water costs for Kellogg were approximately 50% higher than Balz-Dobie and Watson-Webb ($0.64 and $0.58, respectively).

XI. Actions and Recommendations

A. Water Fountains: There were no survey questions about water fountains. Six respondents, however, recommend having more water fountains. Most recommend a fountain or water bottle refill station on each floor.

Action: Explore the feasibility and cost of installing water fountains or water bottle refill stations on each floor.

Recommendations (For Future Buildings): Consider the installation of at least one water fountain and/or water bottle refill station on each floor.

B. Common Spaces (First Floor Commons, Study Rooms and Floor Lounges): Most of the comments indicate that these spaces are successful and that they support student study needs and help create a sense of
community. The First Floor Commons does not appear to be as successful as the study rooms and lounges.

Action: Explore different furniture configurations to improve the use of the Commons.

Recommendations (For Future Buildings): Continue to provide a range of common spaces, such as floor lounges and study rooms, since these spaces create a sense of community by providing settings that facilitate student interactions. Investigate programming options for large common spaces.
Appendices
Executive Summary

The University of Virginia’s facilities portfolio includes 561 buildings and related infrastructure, encompassing nearly sixteen million gross square feet of building space, with a conservatively estimated replacement value of $4.3 billion. The facilities portfolio constitutes a significant portion of the total assets held by the University and should be appropriately maintained.

In December 2004, after hearing a presentation about the University’s deferred maintenance backlog, the Board of Visitors embarked on a long-term plan to accomplish two objectives:
(1) Reduce the deferred maintenance backlog to a reasonable level by 2015, with a target facility condition index (FCI) of 5 percent or less. At the time, the FCI was 10.6 percent.
(2) Establish adequate annual maintenance funding to prevent the further accumulation of deferred maintenance, by increasing the then current 1.2 percent reinvestment rate to a 2 percent annual reinvestment rate.

Progress has been made in the last eight years. Annual increases in the maintenance operating budget, combined with the maintenance reserve appropriation has improved the maintenance reinvestment rate to 1.68 percent. We also budget 2 percent of construction costs to maintain each new building we bring on line. Investments through maintenance operations, maintenance reserve and major capital renewals have reduced the FCI to 6.6 percent as of June 30, 2013.

The auxiliaries, Medical Center, and the College at Wise are continuing to address their respective backlogs. The Medical Center, Facilities Planning and Construction, and Health System Physical Plant have developed a building-by-building and system-by-system evaluation of the infrastructure of all Medical Center facilities. The Medical Center Operating Board and the Buildings & Grounds Committee have approved this program of infrastructure enhancement over a period of 10-15 years based on need and available resources from the Medical Center’s annual capital expenditure budget. The Medical Center currently has a facility condition index of 7.8 percent. The College at Wise has reduced its facility condition index to 3.1 percent and has a current maintenance reinvestment rate of 0.7 percent. This low FCI percentage is largely due to many new buildings and capital renewal of existing buildings.

Deferred Maintenance Backlog

Overview
Facilities Management determines the maintenance needs of the University’s E&G buildings by performing facility condition assessments. The goal is to inspect E&G buildings once every four years. The assessments result in a number of immediate repairs. They also document repairs that are needed but cannot be undertaken at the time of inspection due to funding constraints, occupancy requirements, or other factors. These deferred maintenance items become the maintenance backlog for that building.
It is important to distinguish between what a facility may need in terms of maintenance, and what it may need in terms of adaptation or modernization. The maintenance backlog represents the amount of money needed to restore deteriorated components to their original operating condition. In many cases, restoring components to their original operating condition will fall short of today’s standards for function and/or aesthetics; therefore, the cost to fully renovate or modernize a building is usually many times greater than the cost of the deferred maintenance in the building. The deferred maintenance backlog does not include the cost of deficiencies or improvements to safety, accessibility, and building code issues.

Quantify – Current Deferred Maintenance Backlog

As of June 30, 2013 the Academic Division E&G deferred maintenance backlog was reduced to $165 million. The graph below shows the backlog trend and the 5 percent FCI goal, which would be equivalent to a backlog of $125 million in 2012-13

In developing the original deferred maintenance reduction plan, it was recommended that the University undergo a ten-year strategy to improve its E&G facilities from “poor” condition to “good” condition by reducing the facility condition index to 5 percent by 2015. Given assumptions about the expected replacement value in 2015, after inflation and new construction impacts, the deferred maintenance backlog should be reduced to approximately $125 million. The incremental cost to improve the condition of E&G buildings and infrastructure to “good” over the ten-year period was estimated to be $125 million over the then current level of maintenance funding. The additional cost to address safety, accessibility, and code issues while correcting identified maintenance deficiencies was calculated to be $31 million over the same ten-year period, bringing the combined required investment to $156 million. In addition to funds
available in the maintenance operations and maintenance reserve budgets, the University will rely on the capital budget to address maintenance items through building renewals such as Ruffner Hall, New Cabell Hall, the Rotunda, and other proposed infrastructure projects.

Facility Condition Index

Overview

The Facility Condition Index (FCI) is a simple and widely accepted measure used to indicate the relative condition of a building. It is calculated by dividing the value of the maintenance backlog in a building by the replacement value of the building and showing the result as a percentage.

For example, a building with a replacement value of $5 million that contains a $100,000 maintenance backlog has an FCI of 2 percent. By comparison, a building with a replacement value of $600,000 that also has a $100,000 backlog is in relatively worse condition. The FCI for that building is 17 percent.

Recognized industry benchmarks assume that a facility with an FCI of less than 5 percent is in “good” condition; a facility with an FCI between 5 percent and 10 percent is in “fair” condition; and a facility with an FCI of more than 10 percent is in “poor” condition.

Quantify – Current FCI

At June 30, 2013 the Academic Division E&G deferred maintenance backlog is $165 million, with a total facility replacement value of nearly $2.5 billion resulting in an FCI of 6.6 percent.

Maintenance Reinvestment Rate

Overview

The ratio of the building maintenance expenditures to the total replacement value is known as the maintenance reinvestment rate (MRR). Various authorities cite a range of 1.5 percent to 4 percent as the reinvestment rate necessary to prevent the growth of a deferred maintenance backlog. Given the age of many of the University’s buildings and the substantial amount of deferred maintenance already accumulated, a reinvestment rate of at least 2 percent is warranted. To this end, when newly constructed facilities come online, the University allocates 2 percent of the building’s construction cost to the annual maintenance operations budget.
Quantify – Current MRR

The total amount invested in building maintenance can be calculated by combining the amounts available from the operating budget and from Maintenance Reserve. For 2013–14 we budgeted $41.8 million for maintenance of E&G facilities or 1.68 percent of the replacement value of the E&G buildings and infrastructure.

The table below shows the reinvestment rate for the University’s E&G buildings since the Board of Visitors initiative began. These figures are based on funds available for investment in a given year rather than actual expenditures which may vary from year to year based on time required to plan and execute the work.

Maintenance Reinvestment Rate

<table>
<thead>
<tr>
<th>Period</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2007</td>
<td>1.66%</td>
</tr>
<tr>
<td>2007-2008</td>
<td>1.70%</td>
</tr>
<tr>
<td>2008-2009</td>
<td>1.71%</td>
</tr>
<tr>
<td>2009-2010</td>
<td>1.66%</td>
</tr>
<tr>
<td>2010-2011</td>
<td>1.65%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>1.70%</td>
</tr>
<tr>
<td>2012-2013</td>
<td>1.61%</td>
</tr>
<tr>
<td>2013-2014</td>
<td>1.68%</td>
</tr>
</tbody>
</table>

The graph below shows the funding trend and annual shortfall relative to a 2 percent funding level over the past eight fiscal years. It is clear to see that the funding shortfall has improved greatly since 2005-06 as the Board initiative has gained traction.
Accomplishments

Capital Renewal Projects

Whole building renewals are crucial to successfully reduce the University’s overall facility condition index. It is the most efficient method of dealing with the maintenance challenges associated with an older facility. A renewal project corrects maintenance needs while adapting the building to planned use and current codes.

Extensive renovations are taking place at New Cabell Hall, Ruffner Hall, and the Rotunda, which are funded by state capital funds and some Deferred Maintenance contributions. The capital renovation of New Cabell Hall will completely renovate the facility and include the installation of a new HVAC system, curtain wall, and court yard. Below are some pictures of the ongoing work at New Cabell Hall.

![New Cabell – Curtain wall installation](image1)
![New Cabell – Finished curtain wall](image2)
![New Cabell – West terrace façade and terrace repairs](image3)
![New Cabell – 3rd floor classroom in progress](image4)
New Cabell – 3rd floor corridor in progress

New Cabell – 5th floor framing and MEP rough-in
The capital renovation of Ruffner Hall includes all new HVAC, electrical, and plumbing systems, roof replacement, elevator modernization, and complete asbestos abatement. Below are pictures of the ongoing work and renderings depicting how some of the rooms will look once completed.
The capital renovation of the Rotunda has completed the roof replacement, exterior masonry and water table repairs, and windows and ornamental sheet metal restorations. Beginning next year the project will begin interior renovations to include the installation of a new elevator and mechanical system. Below are pictures of the now completed exterior work.

Rotunda – Scaffolding for exterior repairs

Rotunda roof

Rotunda – Archaeological investigation

Rotunda – Install of repaired architraves and pediments

Final Exercises on 5/19/13
Deferred Maintenance Renovations

Over the past summer the Deferred Maintenance program funded the renovations of the Lambeth Colonnade and Dawson’s Row #1. The result of these renovations lowered the maintenance backlog while correcting safety issues at Lambeth Colonnade and updating Dawson’s Row #1 building systems and overall usability.

Dawson #1 First floor condition – Before and after

Dawson #1 office condition – Before and after

Dawson #1 Second floor office – Before and after

Dawson #1 Attic – Installation of HVAC system

Lambeth Colonnade - Before

Lambeth Colonnade – In progress

Lambeth Colonnade - Finished
Elevator modernization project

Over the past year the deferred maintenance program has funded 12 elevator modernization projects. Below are pictures of the finished Physics and Faulkner elevators. The Monroe Hill and Chemistry elevators are currently in progress and work is about to begin on both elevators in Memorial Gym.
Deferred Maintenance Projects

There are over 66 deferred maintenance projects in progress, totaling over $20.7 million, including the upcoming Albert H Small Building and Zehmer Hall roof replacements, Memorial Gym’s window replacement, and Halsey Hall’s built in gutter and ridge cap replacement. In progress projects include Alderman Library’s roof replacement, the Academical Village Serpentine wall repair, MR-4’s generator replacement, Clemons Library terrace repair and waterproofing, and others.

Another major project that took place during 2012-2013 was the Drama Education Building’s roof replacement.
By completing deferred maintenance projects, the backlog is reduced and the overall condition of the University’s facilities is improved. Since 2005-06, hundreds of deferred maintenance projects have been completed. In 2012-13, projects such as the West Range roof replacement, Slaughter Hall’s window replacement and the Withers-Brown air handling unit replacement were instrumental in reducing the overall maintenance backlog.
Challenges

Maintenance Budget Reductions
During the last three decades, building maintenance has frequently been one of the first expenditures to be deferred during budget reduction cycles. Since the Board approved program began the maintenance operating budget has been reduced by a total of $2.9 million which lowers the maintenance reinvestment rate by about one-tenth of one percent. Despite these reductions we have returned to the multi-year investment program when we are able and have made good progress as this report reflects.

State Maintenance Reserve Funding
Maintenance Reserve has funded nearly $120 million in maintenance projects from the 1982-84 biennium through 2012-14 for E&G facilities. In the 2008-10 biennium, the Maintenance Reserve budget was set at approximately $14.5 million. Unfortunately, the University’s allocation was reduced in the 2010-12 biennium to $9.86 million and then increased to $10.1 million in 2012-2014.

Summary
In 2005-06, the Board of Visitors embarked on a long-term plan to reduce the deferred maintenance backlog of E&G facilities and the corresponding FCI to 5 percent or less. The Board also took steps to establish adequate annual maintenance funding to prevent the further accumulation of deferred maintenance. Today the FCI is 6.6 percent, which is in the “fair” category by industry standards. The FCI has shown a steady improvement since 2004-05, when the Report on the Condition of University Facilities reported the E&G FCI to be 10.6 percent. The University has made significant progress in enhancing its operating maintenance budget toward the targeted two percent reinvestment rate, a rate that began in 2005-06 as 1.2 percent and is now 1.68 percent.
Appendix B
University and University of Virginia Foundation Land Holdings

Introduction

The following materials are provided as background for the Board of Visitor’s meeting presentation on University real property. These supplemental materials provide general information about the University of Virginia’s and the University of Virginia Foundation’s land holdings and out of area leases.

Overview of Materials

Land Holdings and Property
The University of Virginia is the size of a small city, consisting of 3,405 acres of land throughout the Commonwealth of Virginia, including 241 acres in Charlottesville and 1,467 in Albemarle County. The University of Virginia Foundation holds 5,179 acres of land with 4,935 acres in Albemarle County.

The Commonwealth of Virginia map (Figure 1) demonstrates that the University has a widespread state presence, spanning the southwest, northern, and eastern parts of the state, in addition to its home base in Charlottesville. Twenty-six sites are either owned or leased by the University or the University of Virginia Foundation to carry out functions that include medical care, research, and off-site degree and non-degree programs.

The Albemarle County map (Figure 2) shows that UVa and the UVa Foundation own 18 properties in the County beyond what we consider to be the Central Grounds. These properties include the research parks, commercial properties, houses, and farm land.

The Central Grounds and Contiguous Properties (Figure 3) map shows the developed and undeveloped land contiguous to Central Grounds that is owned by UVa and the UVa Foundation. The City/County boundary reflects the fact that the University lies both in the City and in the County of Albemarle and at times, that boundary bisects buildings (e.g. University Hall).

1 excludes UVa College at Wise
Figure 1: UVa and UVa Foundation Properties
Commonwealth of Virginia

(Owned and Leased Properties Excluding the City of Charlottesville and Albemarle County)

University of Virginia
University of Virginia Foundation
SCPS - School of Continuing and Professional Studies

1. **Blandy Farm**, Boyce, VA, University-owned
 Blandy Experimental Farm is a 700-acre University of Virginia research facility situated in the northern Shenandoah Valley, about 10 miles east of Winchester. Blandy Experimental Farm is also the home of the State Arboretum of Virginia, displaying more than 8,000 trees and woody shrubs. The collections include more than half the world’s pine species, the Virginia Native Plant Trail, the Boxwood Memorial Garden, a spectacular grove of more than 300 ginkgo trees, an herb garden featuring culinary, medicinal, and ornamental herbs, and much more.

2. **Northern Virginia Graduate Center, School of Continuing and Professional Studies**, Falls Church, VA, University-owned, 2 acres, ground lease, 5 acres
 The Northern Virginia Center is a 105,000-square-foot facility located at 7054 Haycock Road adjacent to the West Falls Church Metro station. The facility is owned and operated in partnership between UVa and Virginia Tech. SCPS offers its degree and certificate programs, as well as credit and noncredit courses at these centers. Other schools and departments within the University utilize these facilities to offer workshops, courses and degree programs and host events.

3. **Currie Farm**, Haymarket, VA, U.Va. Foundation owned, 205 acres
 The Currie Farm was given to the University in 1964, and in 1997, the property was transferred to the University of Virginia Foundation. The Foundation has rezoned the property for residential development for all but ten acres, which will be reserved for future use by the University. The property has been marketed for sale.

4. **Page County Dialysis Center**, Stanley, VA, lease, 4,627 SF.
 UVA Page Dialysis is a 12 station dialysis center co-located with a clinic that serves the Page County Memorial Hospital.

5. **Augusta Medical Center**, Fishersville, VA, lease, dialysis, 5,060 SF
 The UVa Augusta Dialysis Facility utilizes state of the art equipment and technology including Cobe Century 3 machines.

6. **Orange County Medical Clinic**, Town of Orange, VA, University-owned, 3.3 acres
 University Physicians at Orange is a Family Medicine Clinic that serves Orange County and surrounding areas.

7. **Medical Park Zion Crossroads, Spring Creek**, Zion Crossroads, VA, owned, 46,000 SF
 A primary and specialty care facility that provides a range of services to those who live and work east of Charlottesville. MRI, CT and digital x-ray services are available on-site.

8. **Stoney Creek Medical Building**, Nellysford, VA, lease, medical clinic 5,411 SF
 The practice, established by the Department of Family Medicine, offers primary care for patients of all ages.
9. **Richmond**

 a. **Richmond Center, (SCPS)** 2810 Parham Road, lease, 5,931 SF
 The Richmond Center is located at 2810 N. Parham Road in leased space. Virginia Tech is co-located at this facility and has a separate lease for its space. SCPS offers its degree and certificate programs, as well as credit and noncredit courses at this location. Other schools and departments within the University utilize these facilities to offer workshops, courses and degree programs and to host events.

 b. **Weldon Cooper Center**, 11 South 12th Street, Shockoe Centre, lease, 4,299 SF
 The University of Virginia’s Weldon Cooper Center for Public Service is a research and training organization focused on the Commonwealth of Virginia. The Center provides objective information, data, research, technical assistance, and practical training to state and local officials, community leaders, and members of the general public. The University’s Office of State Governmental Relations shares space with the Cooper Center.

10. **Amherst Dialysis Center**, Amherst, VA, lease, 11,052 SF
A large dialysis clinic with 26 stations.

11. **Mountain Lake Biological Station**, Pembroke, VA, ground lease, 574 acres
The Mountain Lake Biological Station is a field research and teaching facility located in the deciduous hardwood forest of the Appalachian Mountains of southwestern Virginia. It is the field station of the UVa Biology Department, providing a wide array of natural environments as well as two modern laboratories. Full living accommodations are available on site.

12. **Boat Docks**, Marionville, VA, use agreement
Boat docks used to support the Anheuser-Busch Coastal Research Center.

13. **Anheuser-Busch Coastal Research Center**, Oyster, VA, University-owned
The state-of-the-art facility is located on 42 acres in the Town of Oyster, Va., about 15 miles north of the Chesapeake Bay Bridge-Tunnel. It includes more than 9,400 square feet of dry and wet lab space, a 5,800-square-foot residence building that can accommodate 30 people, and a dock for its fleet of four shallow water research vessels.

14. **Lynchburg Dialysis Center**, Lynchburg, VA, use agreement, 20,484 SF
The Center provides dialysis service in the Lynchburg area.

15. **Roanoke Center, (SCPS)** Roanoke, VA, lease 5,728 SF
SCPS is a partner in the Roanoke Higher Education Center and leases office and classroom space within the Roanoke Higher Education Center’s facility where it delivers its degree and certificate programs, as well as credit and noncredit courses.
16. Camelot Village Apartments, Salem, VA, lease, 5 apartments
 The apartments provide housing for Medical Residents working at the nearby Veterans Administration Hospital.

17. U.Va. College at Wise, Wise, VA, University-owned, 358 acres
 The University of Virginia's College at Wise is the only four-year, state-supported college in far Southwest Virginia and the only branch of the University of Virginia.

18. Southwest Virginia Higher Education Center, (SCPS) Abingdon, VA
 SCPS is a partner in the Southwest Virginia Higher Education Center located in Abingdon where it has use of office and classroom spaces to offer its degree and certificate programs, as well as credit and noncredit courses.

19. Newport News Center, (SCPS) Newport News, VA, lease, 8,274 SF
 The Newport News Center is located at 600 Thimble Shoals Boulevard in leased space that is shared with Virginia Tech. Virginia Tech subleases 2,758 rentable square feet of the total 8,274 square footage. SCPS offers its degree and certificate programs, as well as credit and noncredit courses.

20. Valley Nephrology, Roanoke, VA, lease, 3,375 SF
 An outreach clinic for UVa’s Charles O. Strickler Transplant Center focusing on end stage renal disease and kidney transplantation.

21. Augusta Professional Clinic, Fishersville, VA, lease, 26,585 SF
 A medical facility that houses a number of specialty clinics to include cardiology, pediatrics, and oncology.

22. Altavista Dialysis, Altavista, VA, lease, 6,883 SF
 Offers dialysis services in Altavista, VA.

23. UVa Medical Park, Zion Crossroads Dialysis Center, Louisa, VA, lease, 5,013 SF
 The Dialysis Center is a 5,000-gross-square-foot, single-story structure housing 12 dialysis treatment stations and all support facilities necessary to provide a complete and functioning facility.

24. Continuum Home Health Care, Waynesboro, VA, lease, 475 SF
 Continuum is an accredited home health agency that provides healthcare for patients who require care at home. The services are provided by qualified nurses, pharmacists, therapists, social workers, nutritionists and aides.

25. Pebble Creek Apartments, Roanoke, VA, lease, 4 apartments
 The apartments provide housing for Medical Residents working at the nearby Veterans Administration Hospital.
Located in Prince George County, Virginia, just south of Richmond, and adjacent to the Rolls Royce’s manufacturing plant, the 62,000 square-foot facility houses computational and large-scale production labs, as well as open production space for heavy equipment and surface coating processes. The Commonwealth Center for Advanced Manufacturing is an applied research center that bridges the gap between fundamental research typically performed at universities and product development routinely performed by companies. CCAM accelerates the transition of research innovation from the laboratory to commercial use.
U.Va. and U.Va. Foundation Properties – Albemarle County

 The University of Virginia Research Park is a 3.7-million-square-foot, fully master planned, mixed-use development zoned for office, light industry, hotel, conference center, laboratory/medical/pharmaceutical, and retail/support commercial uses.

28. **1250 Seminole Trail**, U.Va. Foundation owned, 1.3 acres
 A commercial opportunity located at the corner of Rt. 29 North and Greenbrier Drive.

 A long-term ground lease from the University of Virginia Foundation provides for a senior living facility operated by Sunrise Senior Living Inc.

30. **Westover**, U.Va. Foundation owned, 266 acres
 Westover is a picturesque, stately home which may be seen when approaching Charlottesville from the south on Rt. 29. The University Foundation purchased this home and property in 1986.

31. **Montesano**, U.Va. owned, 5 acres; U.Va. Foundation owned, 1.6 acres
 Since May 2008, the Center for Politics has made its home at Montesano, a renovated 19th-century Georgian house near the grounds of the University of Virginia.

32. **Birdwood Mansion**, University-owned, 16 acres
 Built in 1830, the University acquired the house and surrounding land in 1974. The building was last occupied by the School of Continuing and Professional Studies. It has been vacant since 1996.

33. The **Boar’s Head Sports Club and Office Complex**, U.Va. Foundation owned
 Boar's Head Inn includes 175 rooms, championship golf, squash, and tennis facilities, a sports club, and an office complex situated on 589 acres. The Professional Center encompasses 75,000 square feet of office space in numerous buildings.

34. **Midmont**, U.Va. Foundation undivided 58% ownership interest with Midmont Lane Land Trust, 6.9 acres.
 A former residence, the building is vacant.

35. **Foxhaven Farm**, U.Va. Foundation owned, 279 acres
 Mostly undeveloped land, west of Charlottesville, includes two homes. These properties are contiguous and originally owned by the Heyward Family (Foxhaven Farm).
36. **Fontaine Research Park**, U.Va. Foundation owned, 54 acres
 The Fontaine Research Park is a master planned research park, situated on 54 acres, with nine buildings and 560,000 square feet of existing development. Park tenants include several University of Virginia departments, the University Physicians Group, HealthSouth/UVa Rehabilitation Hospital, and University of Virginia Investment Management Company. The property was re-zoned in 2010 to accommodate an additional 350,000 square feet.

37. **Worrell**, U.Va. Foundation owned, 5.6 acres
 The site is home to the Kluge-Ruhe Aboriginal Art Collection and The Thomas Jefferson Center for the Protection of Free Expression.

38. **Blue Ridge**, U.Va. Foundation owned, 159 acres
 Located at the foot of Monticello Mountain, this property is the site of the former Blue Ridge Sanatorium, and is a long-term hold for future University development.

 Kenwood is the home of the Robert H. Smith International Center for Jefferson Studies. The University Foundation has leased the property to the Thomas Jefferson Foundation.

40. **Milton Airfield**, University-owned, 172 acres
 Milton Airfield, a decommissioned airport, hosts a number of activities, to include a Department of Defense Air Quality monitoring site, a practice shooting range for University Police and an off-site construction facility for EcoMOD, a design/build/evaluation project in the School of Architecture in partnership with the School of Engineering and Applied Science.

41. **Davis Farm**, University-owned, 37 acres
 Undeveloped land, south of Charlottesville.

42. **Marshall Manor**, U.Va. Foundation owned, 10 acres
 South of Charlottesville, improved with a cellular antenna.

43. **Morven Farm**, U.Va. Foundation owned, 2,913 acres
 The land conveyed to the University of Virginia Foundation by Mr. Kluge is divided into a core segment and a non-core segment. The 749-acre core property is on a portion of Morven Farm. The core will be held by the Foundation in perpetuity and is used to support the University’s educational programs.

44. **Fan Mountain Observatory**, University-owned, 111 acres
 The University operates the Fan Mountain Observatory, about 15 miles south of Charlottesville. In recent years, extensive hardware upgrades and instrumentation efforts have transformed the observatory into a more modern research facility currently capable of optical and infrared imaging and spectroscopy.
Figure 3:
UVa and UVa Foundation Central Grounds and Contiguous Properties
INTRODUCTION

FROM THOMAS JEFFERSON’S TIME DOWN TO OUR OWN, THE DEMANDS OF FULFILLING THE MISSION OF THE UNIVERSITY OF VIRGINIA -- TO DEVELOP THROUGH EDUCATION LEADERS WHO ARE WELL PREPARED TO SHAPE THE FUTURE OF THE NATION -- HAVE REQUIRED CONTINUAL CHANGES ON GROUNDS. WHILE THE CONSTRUCTION OF NEW FACILITIES ENABLES THE UNIVERSITY TO PROVIDE FOR PRESENT NEEDS, THE THOUGHTFUL PRESERVATION OF EXISTING STRUCTURES PROMOTES AN IMMEDIATE CONNECTION TO OUR SHARED PAST. SUCH A TANGIBLE, EVERYDAY CONNECTION IS VITAL BOTH TO SAFEGUARDING THE DISTINCTION OF THIS PLACE AND TO STRENGTHENING THE DIRECTION OF ITS MISSION.

THE LAWN, THE ORIGINAL ENSEMBLE OF BUILDINGS THAT CONTINUES TO ACT AS THE HEART OF THE INSTITUTION, IS CLEARLY FUNDAMENTAL TO THE IDENTITY OF THE UNIVERSITY. THIS LEGACY OF JEFFERSONIAN ARCHITECTURE IS WITHOUT QUESTION THE SINGLE MOST IMPORTANT FACTOR TO CONSIDER IN ANY PROPOSED CHANGE TO THE UNIVERSITY’S ENVIRONMENT. ALL CONSTRUCTION SUBSEQUENT TO JEFFERSON’S TIME HAS OF NECESSITY ENTERED INTO A DIALOGUE WITH THE UNIVERSITY’S ORIGINAL DESIGN, WITH ITS SITING, AND WITH THE IDEAS ABOUT EDUCATION THEY EMBODIED. IN THIS SENSE, THE ENTIRE CAMPUS, NOT ONLY THE SMALL PART TOUCHED PERSONALLY BY JEFFERSON’S OWN HAND, BEARS THE FOUNDER’S LEGACY.

Jefferson’s Legacy

Jefferson had ruminated for many years over the exact form a new institution of higher learning might assume. As early as 1810, he wrote:

I consider the common plan followed in this country, but not in others, of making one large and expensive building, as unfortunately erroneous. It is infinitely better to erect a small and separate lodge for each professor, with only a hall below for his class, and two chambers above for himself, joining these lodges with a barracks for a certain portion of the students, opening into a covered way to give a dry communication between all the schools. The whole of these arranged around an open square of grass and trees would make it what it should be in fact, an academical village instead of a common den of noise, filth and fetid air.
As far as we know, Jefferson’s first visualization of this ideal was the group of drawings he prepared for Albemarle Academy, a predecessor of the University, in August of 1814. His site plan for the Academy reveals that there were to have been at least nine pavilions for professors, distributed among student dormitories on three sides of an open square. When Jefferson began to realize his conception at Central College—what would become the University of Virginia—he found that the contours of the actual site were ill suited to this form. The proposed open square with pavilions and dormitories on three sides became a pair of parallel ranges, defining two sides of an elongated rectangle. At the suggestion of his friend Benjamin Latrobe, the northern end of this rectangle was to be filled by a domed building.

Ranges were added to the east and west, including dormitories and “Hotels,” in which the students would board at separate “messes.” Gardens would be placed between the ranges and the pavilions. Jefferson observed that this design, in which each range faced a back street, formed “the commencement of a regular town, capable of being enlarged to any extent which future circumstances may call for.”

In its completed state, Jefferson’s University neatly summarized his social vision and educational philosophy. The system of pavilions with student dormitories between them, as opposed to one large building, would encourage paternal, mentoring relationships between professor and student. Each representing a professor and thus a field of study, the pavilions together would function as a catalog of the curriculum. Both the curriculum and the compound serving it could be extended indefinitely, as circumstances dictated. Instruction would be the best available: the benefit of a self-contained gentle decency for each professor, with the genteel accoutrement of a garden enclosed by serpentine brick walls as well as the use of larger plots for subsistence gardening and pasturage for horses and cattle, would be a strong inducement to the best minds of Europe to join the faculty of the University. Finally, as specimens of architecture, the pavilions would provide exemplars of correct taste for a new generation of architects and patrons.

If the University was to consist of sub-communities formed around meals or professors, its larger unity as a place of learning was evident in its distribution around a single green space, and in the rough equivalence of all pavilions and of all student rooms. Centering this unity was the building at the head of the Lawn, the Rotunda. Jefferson had imagined the University as essentially secular, dedicated entirely to the pursuit of knowledge; his domed library, a temple of reason, was an appropriate crowning element.

The University’s rural location had also been Jefferson’s deliberate choice, reflecting his hope that a cloistered center of learning would protect students from the vices endemic to towns and cities. Jefferson envisioned the University as a kind of Elysium, an ideal place of virtue and felicity, a concept that resonated with the classical images that nourished his imagination. More than any American of his time, Thomas Jefferson appreciated the symbolic importance of public architecture, its capacity to embody and promote social ideals. Through all the changes to come, the conviction of the inescapable relationship between architecture and social values, particularly as these pertained to education, was a part of Jefferson’s legacy that was never cast aside.
1830: GROWTH AND THE CHALLENGE TO COMMUNITY

These years saw developments that Jefferson could not have anticipated, including significant growth of the student body and social movements that worked against the close relationship Jefferson had envisioned between students and professors. Although new construction maintained the classical style of the buildings Jefferson had designed, changes to the pavilions, the gardens, and the Rotunda altered the appearance as well as the nature of the University.

Jefferson’s final plan for the University was intended to allow for change: he noted that the compound he had designed could be enlarged as “future circumstances may call for.” The future circumstances of the University, however, were to go beyond anything Jefferson could have foreseen. The University’s design, wonderful as it was, has continued to create challenges for planners and administrators seeking to respond to the changing conditions of the University and the world around it.

One of the earliest challenges was the growth in the student population beginning in the 1840s, attributable not only to the University’s reputation but to the expanding prosperity of the South generally and to the development of the railroad network, which now included connections to Charlottesville. Between 1842 and 1856, the number of students enrolled rose from 128 to 645. This burgeoning population created a need both for more housing and for more lecture halls.

Across the road defining the southern boundary of the Lawn, the ground fell away rapidly, allowing an unobstructed vista toward the Southwest and Ragged Mountains, but rendering impractical Jefferson’s idea of an indefinite expansion of the Lawn in this direction. The Lawn was girded by the fenced plots of ground set aside for the use of professors, creating an agricultural zone around and contiguous to the institution; from the base of the Rotunda to the north the land fell in a steep slope, planted with Scotch broom. Expansion inevitably required some violation of the ideal of community embodied in the Lawn.

Countering Jefferson’s intention to foster close mentoring relationships between professor and student, officials now encouraged students to find room and board in the hotels and “outboarding” houses of Charlottesville. The on-grounds housing created in 1848 by the construction of two ranges of scholars’ rooms, embracing a total of twelve units, was located apart from the Lawn, on Monroe Hill. The State scholars who occupied these rooms and boarded at Monroe Hill House all received financial assistance, thus creating a social stratification Jefferson would not be likely to have approved. This segregation paralleled a growing tendency of University men to divide themselves along social lines, as evidenced in the emergence of fraternities and secret societies. To accommodate lectures and other activities, in 1853 a new wing, designed by Robert Mills, was added to the Rotunda. The new assembly hall housed in the Rotunda Annex was large enough to seat the entire University, again contrary to Jefferson’s conception of the University as a series of smaller communities.
The pavilions saw their own changes. The movement of lectures to the Rotunda Annex, a consequence of the increased size of the student body, was propelled as well by shifting social patterns. The tendency of University youths--sons of slave owners in a time of hardening views on slavery--towards violent resistance of any measures for discipline contributed to hostile relationships between students and professors, including the pelting of the pavilions with rocks and foul substances, and culminating in the 1840 murder of Professor John A. G. Davis. A mentoring relationship would have been difficult to sustain in these conditions. The emerging idea of domesticity, in which the home was represented as a refuge from an impure world, would also have discouraged the practice of holding lectures under the professor’s roof.

As the function of the pavilions changed, professors came to regard their homes and gardens with strong proprietary feelings. Some pavilions were enlarged by rear extensions or expanded into adjoining student rooms, in order to provide more spacious quarters. Other professors closed up doorways, inserted or demolished interior walls. Meanwhile, roofs of some pavilions as well as student rooms were reconfigured from flat to sloping to address the problem of leakage. The ornamental gardens behind the pavilions were gradually diminished by the encroachment of numerous outbuildings to accommodate expanded domestic services. Present-day survivors from this early expansion include the Mews, the Cracker Box, and McGuffey Cottage.

The effort to counteract violence--which accounts for the institution of the Honor Code in 1842--may have contributed to the University’s participation in a nationwide shift at college campuses away from training in personal combat to non-competitive sports. In 1851, the University abandoned boxing, fencing, quarter staff, and broadsword, sports then called “gymnastics,” for the activities now associated with that name. In Edward Sachse’s famous view of the University in 1856, a collection of athletic equipment, corresponding to today’s parallel bars, pommel horse, rings, and balance beam, is shown in a grove of trees across the road from the south entrance to the Lawn.

Despite these alterations to Jefferson’s plans--and to his ideas--the architectural style of new building during this period was in large part faithful to the Jefferson idiom, thanks to the oversight of Visitors John Hartwell Cocke and Joseph Carrington Cabell, collaborators with Jefferson in the original design of the Lawn. The Visitors’ guardianship of the founder’s tradition even as they approved changes that moved the University into the national mainstream is perhaps the first instance of the dialogue with Jefferson’s legacy that innovators at the University have continued to enter into.

1860: HISTORICAL STYLES, TECHNICAL ADVANCES

The popularity of the Picturesque in architecture led to the re-design of the University’s landscape and to new styles, calling on varied historical models, for new construction. Despite their allusions to Italian, French, and Medieval Gothic styles, the new buildings embodied the University’s new concern with broad-scale technical advances that had begun before the Civil War and accelerated in the War’s aftermath: a forward-looking infirmary, a natural history museum honoring Darwin, a state-of-the-art observatory.
The University’s architecture and landscape design of this period marked a sharp break with Jefferson’s classical style. The creation of meandering paths and on occasion even the siting of new buildings showed a similar freedom from allegiance to the Lawn’s orthogonal grid. These stylistic changes were in accordance with national trends in architecture and landscape design. At the same time, developments in society and culture, particularly in the emerging idea of the American university, informed the nature and purpose of this new construction.

Pre-Civil War: Pratt and Picturesque Architecture

The appointment of William A. Pratt as Director of Buildings and Grounds in 1858 ushered in a new era in the University’s physical development. During the 1840s and 1850s, architects and patrons had begun to abandon the cool reason of Roman classicism in favor of an emotionally charged, romantic architecture, calculated for picturesque effect. The romantic styles popularized by New York architect Alexander Jackson Davis and his friend, landscape architect Andrew Jackson Downing, were intended to evoke another time or place and in doing so to call forth particular longings and sentiments. As a devotee of this tradition, Pratt set out to remake the University, preparing a master plan to guide the development. Judging from the age of the trees, he seems to have planted many of the trees that now shade the area north of the Rotunda, having cleared away the fenced plots of the professors in the Brooks Hall triangle. Most notable, however, was a lacy network of serpentine paths laid out at the periphery of the Grounds and ignoring the orthogonal pattern of Jefferson’s earlier plan. The implications of this scheme were far-reaching, for in creating these new walks, Pratt moved to a more remote location the utilitarian gardens and pastures, agricultural plots which had surrounded the University for a quarter century.

Two 1857 buildings designed by Pratt exemplified the architectural styles that would come to characterize this period. One of these buildings was the University’s first indoor athletic facility, Squibb Gymnasium (now Levering Hall). Following the national trend to house athletic activities in purpose-built gymnasia, this structure, created by extending Pavilion F with a two-story addition, was built in the Italianate style, one of the approved manners of picturesque architecture.

The same style was employed in a new infirmary (now Varsity Hall) constructed in the same year. Pratt followed the principles of the picturesque in fixing the building’s orientation, taking his cue from the topography of the hillside on which it stood and from the informal geometry of the new landscape he was creating. Situated down the hill from East Lawn, Pratt’s infirmary fronted northeast, and so became the first significant structure to violate the geometry of Jefferson’s original plan.

The infirmary’s siting apart from the pavilions and dormitories was determined by hygienic concerns as well. From its inception, the University had been beset by epidemics of typhoid and other diseases; the laying out of the University Cemetery in 1828 was directly attributable to the resulting deaths. Measures for cleanliness and ventilation of student rooms had been instituted in an effort to promote health, and a new water system had been installed in 1854. Still, the epidemics had persisted. In constructing the infirmary, the University not only responded to but actually helped set in motion a national trend. This was the first purpose-built infirmary on any American campus. To ensure a healthful setting for the care of ill students, no
trouble was spared in procuring for the structure all the latest in heating and ventilation technology. Large windows admitted more light and air, for which sliding shutters allowed precise control. From the basement, a convection furnace delivered heat to the rooms, free of combustion’s noxious byproducts. The University’s continuing effort to modernize its provisions for sanitation would eventually lead to the construction of a general sewage system in 1886.

Post-Civil War: High Victorian

The University’s building program was interrupted by the Civil War and the enormous distress and dislocation of the post-bellum years. No major building project was undertaken between 1858 and 1867. When construction began again, it was often funded by philanthropists, both northern and southern, enriched by the rapid growth of manufactures and the consolidation of key industries. This construction reflected yet another architectural shift, this time towards the florid, polychromed richness of historical styles that offered opportunities for novelty and adornment. The juxtaposition of diverse materials, textures, and colors was a special source of delight. Architects gloriied in ornaments and textures that bespoke the role of handwork in their creation. Brooks Hall, the gift of Rochester philanthropist Lewis Brooks, was a herald of these new ideas. Constructed in 1876-77 according to the design of architect John Rochester Thomas, this French-inspired building’s vertical massing, mansard roof, contrasting materials, and provocative detail made it unique among University buildings.

Brooks Hall reflected then-current cultural as well as architectural trends, in particular the prominence of Darwin’s ideas. After the Civil War, natural history museums were created on a number of campuses across the country, some illustrating the new theory of evolution. Reportedly, the museum’s contents were arranged to illustrate this controversial new concept of nature. On the building’s exterior were displayed the names of important naturalists and thinkers, including Darwin.

Other historical styles inspired the architecture of University buildings of this period. The Gothic Revival found its first expression at the University in an 1856 gatehouse, the so-called “Chateau Front and Back” erected by Pratt in the ravine where Alderman Library would eventually stand. The McCormick Observatory, the gift of Leander McCormick of Rockbridge County, Virginia, younger brother of Cyrus, was medieval in its architectural inspiration, although definitely modern in its purpose. Built in 1885 on land acquired by Jefferson at the University’s western periphery for this purpose, the observatory housed an important telescope, also the gift of McCormick, at that time the largest reflecting instrument in the nation. The hand-operated metal dome, too, was a unique structure and had been patented by its designers. The brick masonry substructure resembles the chapter house of a medieval cathedral, having a series of buttresses, with windows and blind arches between. Just as the historical styles of these buildings reflected nationally popular trends in architecture, so the technical fields these buildings housed were coming to characterize the emergent American university of the period. In their function as in their design, the few remaining Victorian structures at the University help define that era’s notion of modernity.

The University’s major Gothic Revival structure is the chapel. The conspicuous absence of any building dedicated exclusively to Christian worship had long been a subject of complaint.
The new chapel, completed in 1890, was funded by donations collected locally by the YMCA and the Ladies Chapel Aid Society over a period of fifteen years—an example of home-grown philanthropy contributing to the development of the University. The chapel, designed by Baltimore architect Charles Emmet Cassell, stood opposite Brooks Hall and with that building completed a northward extension of Jefferson’s rectangular compound. The building’s Gothic Revival design evoked Christian architecture of the Middle Ages, while its rambling exterior reflected the Victorians’ delight in irregular, eventful forms, in handcraft, and in varied materials and textures.

Technological advances brought more change to the University. Photographs of the Lawn from about 1870 show that a system of outdoor lighting was installed during this period. Composed of gas fixtures on posts before the colonnades, these lights must have transformed the nighttime experience of Jefferson’s compound. In the continuing quest to secure a safe, reliable water supply with adequate pressure, the University sought to dispense with the water tanks atop the Rotunda, which had begun to leak and were now inflicting damage on the building. 1869 saw the completion of a reservoir created by damming a stream on Observatory Mountain. In 1885 the town of Charlottesville and the University cooperated in an expansion of the reservoir and in the construction of a ten-inch main that would run through the University on its way to town.

The appearance of the University compound was altered in other ways as well. The original black locust trees on the Lawn—shown in decline in the 1870s photographs—were replaced by ash and maple trees. Vines were allowed to envelop buildings like Brooks Hall, clothing the architecture in greenery. The museum itself, thanks to its situation, became the public face of the University. Standing on the extended axis of East Lawn, it fronted toward the east, addressing the Long Walk that ascended from the point where the Senff Gate now stands—making this building most prominent to those approaching from the direction of Charlottesville. But the Jeffersonian legacy, apparently replaced by these modern constructions, was about to take on a new importance at the University and beyond.

1890: THE UNIVERSITY BEAUTIFUL

The Rotunda fire of 1895, in its calamitous effect not only on the Rotunda but on the classroom space provided by the accompanying Annex, created the opportunity for the University to experience the deep and lasting influence of the ascendant Beaux Arts style. The University Beautiful movement, with its emphasis on coherent planning and classical architecture, expressed itself locally in the setting out of new quadrangles, in the establishment of coherent zones of academic endeavor, and in a return to a style of architecture that paid homage to Jefferson’s classicism, a style that was to endure at the University into the 1950s.

The late 19th century saw important developments in the character of the American university as it grew to incorporate not only a larger and more diverse population of students but also more numerous departments and programs in response to the professionalization of many academic fields. The need to manage and rationalize this institutional growth dovetailed with the
major movement in American architecture of this time: the ascendancy of the Beaux Arts tradition (ultimately deriving from the Ecole des Beaux-Arts in Paris), emphasizing the development of highly formal planning for the deployment of buildings, open spaces, and landscape features to create a coherent, harmonious environment in which all components were interrelated.

The still discernible organization of buildings contiguous to the Lawn dates to this period and typifies the master planning of Beaux Arts architects. The classicism of these buildings--such as Cabell, Minor, and Fayerweather--exemplifies the favored style of the Beaux Arts school as it was interpreted in the American context, particularly by practitioners of what was called the Colonial Revival. In drawing upon American classical architecture of the late 18th and early 19th centuries, the Colonial Revival style not only influenced, but was significantly influenced by, Jefferson’s own architecture.

Beaux Arts Planning: Response to the Rotunda Fire

Underpinning the nationwide shift from the picturesque and idiosyncratic styles of the post-bellum years to the more coherent Beaux Arts vision was America’s growing wealth and ascendant role in the world. This new national stature fostered an exuberant sense of confidence, a conception of America as a new civilization continuing the westward progress of the Renaissance. The architects of what scholars have termed the “American Renaissance” sought to invest American cities with the imperial majesty befitting a great nation. The “White City” of the World’s Columbian Exposition, held in Chicago in 1893, with its carefully sited exhibition halls and administrative facilities, each an essay in monumental classicism, inspired the “City Beautiful” movement. Architects and landscape architects, regarding spaces, parks, and buildings as civic art, became noted as much for their planning activities in remaking America’s urban fabric as for individual building commissions. The American university campus was uniquely suited to this City Beautiful enterprise inasmuch as it was a large, densely inhabited place under the sustained control of a single authority. A “University Beautiful” movement touched countless colleges and universities during the late 19th and early 20th centuries. Its goal was to make the campus an idealized setting, dedicated to the physical expression of exalted ideas.

A catalyst in the re-making of the University in the Beaux Arts image was a major calamity in the University’s history: the fire of October 27, 1895, that gutted Jefferson’s Rotunda and the adjoining Annex. From early on, the disaster was viewed by some as an opportunity to enlarge and improve existing facilities--“not simply,” as Rector W. C. N. Randolph wrote to the Board, “to restore the beauty and conveniences of the establishment, but to increase its usefulness by providing facilities more ample and splendid than we have heretofore enjoyed for our scholastic work.”

In pursuit of this goal, the University selected McKim, Mead & White, the nation’s most important architecture firm, to supervise the reconstruction effort. Stanford White looked to the Rotunda’s Roman source, the Pantheon, as a model in designing a single circular room beneath the Rotunda’s dome, its walls to be lined with books. In his creation of the portico on the Rotunda’s north side (toward what is now University Avenue)--its monumentality increased by new ranges of classrooms on each side of the portico--White gave the building, and the northern
face of the University, a more imposing aspect. In the courtyards formed by the new wings and on the raised terrace where the Robert Mills Annex had stood, White proposed a formal scheme of walks and plantings—a classic instance of Beaux Arts design.

In reclaiming the classroom and auditorium space lost in the fire’s destruction of the Rotunda Annex, White and University officials introduced the greatest change to the Lawn since Jefferson’s time. Before the conflagration, the southern end of Jefferson’s compound had remained open, framing a magnificent prospect of the mountains beyond. A new complex of academic buildings—Cabell, Cocke, and Rouss Halls—was now erected on the South Lawn, with Cabell Hall closing off the vista. Among the motives for the decision may have been a desire to buffer the University from “Canada,” an enclave of free African Americans and persons of mixed race, which had grown up around the base of the Lawn.

Despite the closing off of the Jeffersonian vista, the buildings respected the University’s original plan in several ways. To control the scale of what would be an enormous central building, White contrived to build Cabell Hall into the slope of a new terrace formed by extending the Lawn southward. By this means a five-story building could be made to appear as one story and a mezzanine when viewed from the Lawn. Raised pergolas afforded elevated vantage points from which to recover the lost view to the mountains. With a characteristic Beaux Arts concern for the ensemble, the pergolas also provided strong visual connections between Cabell, the centerpiece of White’s design, and the two subordinate buildings flanking it, Cocke and Rouss Halls.

At the same time, however, the separate functions of these three buildings responded to the increasing specialization of academic disciplines and the new importance of technical fields. As Mechanical and Physical laboratories, respectively, Cocke and Rouss Halls took their place quite literally alongside the humanities, represented by the “Academical Building,” known today as Cabell Hall.

Beaux Arts planning determined the future shape of the University as well. White proposed a broad walkway between Jefferson’s Lawn and the new ensemble of classroom buildings, along which transverse axis additional groups of buildings were to be located. White’s plan was never fully implemented, but it is visible today in the walkway connecting Randall Hall to the east and Garrett Hall to the west, ending at McCormick Road.

These two buildings, the former completed in 1899 and the latter in 1908, embodied further changes to Jefferson’s conception of the University in response to broader trends. Garrett Hall was built as a “Commons” building, in which, for the first time in the University’s history, students could dine together at a common mess—an important departure from the boarding arrangements first instituted by Jefferson and accommodated in the Hotels. In this innovation, University officials followed the lead of Ivy League schools, where similar facilities had been modeled on spaces and social conventions prevalent in the venerable Colleges of Oxford and Cambridge. The wainscoted and stuccoed interior of Garrett Hall, adorned with portraits and other memorabilia, echoed the genteel connotations of such spaces and sought to foster a community spirit among the University as a whole. For its part, Randall Hall, a dormitory built to meet the need created by rising enrollments, was the first modern residential hall at the
University. Designed by Paul Pelz, architect of the Library of Congress, its 43 rooms distributed along double-loaded corridors broke definitively with the earlier pattern of University dormitories on the Lawn and the other ranges.

Alderman Administration: Master Plans and Professional Education

A later master plan in the Beaux Arts tradition was produced by distinguished landscape architect Warren Manning of Boston. Drawing on his experience as assistant landscape architect for the World's Columbian Exposition and as an on-site supervisor for construction of the grounds at Biltmore, the vast estate of the Vanderbilts near Asheville, North Carolina, Manning began to study the University in 1906. By 1913, he had proposed a series of quadrangles aligned with the existing complex, each devoted to buildings serving a particular function. Although, like White’s plan, Manning’s was never fully executed, the principles it laid down would remain influential until the 1950s. In particular, planners continued to respect the orthogonal geometry of the original Jefferson compound and the scheme of functional zoning that Manning established, stipulating residential units to the south and west, medical facilities to the east, and fraternities on Carr’s Hill and around Mad Bowl.

Most influential in the development of the new quadrangles was the University’s first President, Edwin Alderman. The pressures of restoring and expanding the University in the wake of the Rotunda fire had revealed the weakness of an administrative structure with no permanent executive. Prior to Alderman’s appointment in 1904, the University’s chief officer, Chairman of the Faculty, had served for a term of one year. Critics argued that it was simply impossible for that officer to give adequate attention to teaching duties as well as to the growing burden of administering the University. A dynamic, visionary individual and a nationally recognized figure in the field of educational reform, Alderman intended to elevate the status of all professional schools at the University.

The Law School was widely regarded as the University’s most prestigious program, yet it had long occupied inelegant quarters in the basement of the Rotunda. President Alderman saw to the creation of Minor Hall on a site overlooking the large ravine in front of Garrett Hall. The declivity between Minor and Cocke was reserved for an amphitheater.

The creation of an Education school, and the elevation of teaching to professional status, may have been Alderman’s favorite project. True to Manning’s proposals, the school was situated west of Jefferson’s original enclosure, and the building, Peabody Hall, was to be the centerpiece of a large quadrangle, with West Range forming the opposite side. As Garrett and Minor Halls pushed Jefferson’s orthogonal grid to the south, the completion of this building in 1914 pushed into the lands west of the original compound.

In his concern for promoting professional education at the University, President Alderman saw to the completion of a hospital (begun in 1899), in the zone to the east of the Lawn. A larger hospital would allow medical students to receive their clinical experience at the University, rather than departing for other institutions, as had been the practice. Inspired by continental models and designed, like Randall Hall, by Pelz, the University Hospital was to incorporate a series of visually distinct pavilions, all connected by a single longitudinal corridor, allowing for phased construction and subsequent extension of the complex.
To the north of the Lawn lay the area Manning designated for fraternities, on Carr’s Hill and around Mad Bowl. Social fraternities had existed at the University since the middle of the 19th century, but only at the beginning of the 20th century did the residential infrastructure of present-day fraternity life at the University come into existence. The first two components of a quadrangle of houses to the north of the Bayly Museum were built in 1911; the third component of what Manning’s 1913 plan showed as a three-sided court was completed in 1922. On the back side of Carr’s Hill two other fraternities, built in 1914 and 1927-28, were sited in accordance with Manning’s plan.

This area also housed a constellation of athletic facilities. In the last decades of the 19th century, collegiate athletics increasingly focused on competitive sports. At the University, these activities centered on a large, low-lying area north of University Avenue. Here, the local YMCA chapter—the first university chapter in the nation, founded in 1858—individually created an enormous athletic field, known today as Madison Bowl, “Mad Bowl” for short. Following shortly upon its creation, in 1892-93 a new gymnasium, Fayerweather Hall, was constructed. The intended relationship between the two facilities is evident in the provision of an open deck on the building’s eastern flank, for viewing athletic events on the field below.

Alderman and Manning also sought to formalize the University’s “vernacular” landscape and to better define its relationship to the surrounding area. A stone wall with battered gate piers and spherical stone finials was erected along University Avenue and later at the entrance to Lambeth Field. The “Senff Gate”—a new portal acknowledging the growing importance of vehicular access from the east, a consequence of the new hospital with its porte-cochère and circular drive—and the “Chain Gate,” providing access to Jefferson Park Avenue via an extension of Hospital Drive, were built in 1915. A series of sculptures erected at strategic points around the Grounds between 1907 and 1915, depicting Homer, Jefferson, and Washington, further reflected the concern for visual coherence and the aesthetic character of the University grounds.

The Rediscovery of Jefferson’s Architecture

As the developing University took the impress of the University Beautiful movement, the University’s own historical legacy actually helped shape that movement. Classicism, important to Beaux Arts architects, was a central aspect of the University Beautiful movement. Jefferson’s version of classicism took on special significance for American architects in this time when a need was felt to create a distinctive American architecture, rooted in the national character. Seeking a strength the nation might draw from its heritage in order to address the challenges of mass immigration, race riots, and Bolshevism, American practitioners turned to the classically-derived architecture of the American colonies and of the early republic. During this period Jefferson’s architecture first came to the attention of American architects and landscape designers, thanks in particular to the studies published by such University-affiliated Jefferson scholars as Manning, William Lambeth, and Fiske Kimball. Their work influenced what became known as the Colonial Revival in architecture.

The use of Jefferson’s own architecture as a model, soon to affect public and particularly collegiate design nationwide, found its first practical application at the University itself, beginning with Fayerweather Gymnasium. The first free-standing University building
constructed since Jefferson’s death to take the form of a classical temple, Fayerweather was regarded by one of its architects, John Kevan Peebles, as a literal quotation from Jefferson’s earlier works (despite its many Victorian attributes, since pointed out by Richard Guy Wilson). The classical allusions of the University buildings designed by McKim, Mead, and White connected to Jefferson’s tradition; Madison Hall, although built, owned, and operated by the YMCA, made unmistakable reference to the Jeffersonian classical style in its organization and the selection of its materials. The Steele Wing at the northern extremity of University Hospital, designed by Walter Dabney Blair, was pointedly Jeffersonian in massing, materials, and detail. Minor and Peabody Halls were also built in the red-brick/classical manner by then emerging as the sanctioned architectural style for University buildings; so too were the fraternities on Carr’s Hill and surrounding Mad Bowl.

By the time of the construction of Lambeth Field with its colonnade, the classical vision was shaping the national campus environment. Ground was broken for Lambeth Field in 1903, the same year that Harvard University unveiled the first concrete stadium built for intercollegiate football—the term and the form of the stadium, as well as the very idea of athletic competition, drawing its authority from classical antiquity. If the University was following the Ivy League colleges in constructing its first purpose-built athletic field, those colleges and others across the nation could be said to have been following the University in the new commitment to classicism in architecture.

1920: NEW BUILDINGS, NEW LANDS

The continued expansion and complexity of the University required the replacement of buildings whose usefulness had been outgrown, although carried out in the recognizable classical style that honored Jefferson’s own architectural idiom, the size and new purposes of these buildings necessitated breaking the bounds of Jefferson’s vision, taking models from national trends in collegiate building, and occupying sites far flung from the Lawn.

This period, framed by the ends of two wars and the subsequent return of hundreds of young men to the rolls of the University, saw continued expansion of the University’s physical plant. The architecture of new buildings showed continued allegiance to classicism, in emulation of Jefferson’s model if not always adhering to his distinctive interpretation of the classical style.

The major new constructions of the early 1920s were designed by the important national figure Fiske Kimball, chair from 1919 to 1923 of the Architecture Department. This department, of which Kimball was the first chair, was part of the new School of Fine Arts funded by Paul Goodloe McIntire. As a complement to this program, McIntire funded and Kimball designed the amphitheater in the declivity between Cocke and Minor Halls, with Garrett Hall to the north. This classical building of the Tuscan order had no particular reference to Jefferson’s work, beyond their shared classical provenance. Memorial Gymnasium—three times the size of Fayerweather Gym, and one of several structures of this time created to replace a smaller building with the same function—showed a similarly classical if not especially Jeffersonian derivation. The new gymnasium followed Charles F. McKim’s Penn Station in being modeled
on the great baths of ancient Rome. The Rugby Faculty Apartments was Kimball’s only literal essay in the Jeffersonian classical style.

Kimball’s last major effort before leaving the University was devoted to planning for the growth of the Hospital and Medical School. President Alderman wanted a building for the Medical School, to help assure that school’s future. Kimball designed a wing for the hospital that duplicated Walter Dabney Blair’s Steele Wing. By its replication in this and subsequent projects, notably the Medical School, Blair’s wing fixed the architectural style followed at the Hospital over the next twenty years, and so created the public face of the University’s medical establishment.

To help direct the University’s accelerating development, President Alderman convened an Architectural Commission, consisting of John Kevan Peebles, architect of Fayerweather Hall, R. E. Lee Taylor, designer of Lambeth Colonnade; Edmund S. Campbell, chair of the Architecture Department from 1927 to 1950; Walter Dabney Blair; and Thomas W. Sears, landscape architect. Alderman requested the commission to look “over the whole terrain capable of new development, forward fifty years or more.” Among the first projects undertaken by the commission was the complex of eight residence halls to be constructed on the western slope of Monroe Hill. To create a level plot of ground, a large terrace was cut out of the western side of Monroe Hill, bounded by stone retaining walls above and below. The classical detailing and traditional materials of these buildings, while not strictly Jeffersonian, were deemed a continuation of the University’s architectural character, for which Jefferson’s compound remained the keynote.

The internal deployment of these buildings was modeled on a contemporary complex of dormitories at the Harvard Business School, which had been laid out on the “separate entry” plan prevalent in the quadrangular colleges of Oxford and Cambridge. Each stair served two suites per floor, each suite housing two persons. This scheme reflected a heightened concern with preserving the residential, collegiate ideal of the American University—the ideal of undergraduate students living together and learning as a community.

As these dormitories were nearing completion, work began on construction of an academic building west of the Lawn complex—a further response to the University’s growing enrollment. Monroe Hall’s placement and orientation reflected the architects’ desire to complete a formal space in front of Peabody Hall, to align that space with Jefferson’s buildings, and to maintain a significant relationship to Monroe Hill, from which the new building had taken its name.

In time, the continuing growth of the University brought planners to an important decision: the lands on either side of McCormick road were now designated for development. The construction of Scott Stadium between 1929 and 1931 initiated development in the area beyond Emmet Street. A facility of the scale demanded by the rapidly increasing student population and the continuing growth of intercollegiate athletics required suitable terrain and ready means of access. These factors led the commissioners to choose a site adjoining McCormick Road, near the base of Observatory Mountain. The concentrations of traffic this facility was expected to create, along with the increased importance of the automobile generally,
prompted improvements in road systems adjoining the University, including the extension of Emmet Street, accompanied by the construction of an overpass for McCormick Road, and the creation of Alderman Road.

The intensive development of the lands along McCormick Road began with the construction of a new home for the Law School and its growing library. The Law School’s preeminence vis-à-vis the other professional schools was honored by the hilltop location chosen for Clark Hall, a site regarded by the Commission as the most important remaining on the University grounds. The dignity of the building was heightened by the distance at which it was set from the road, by the Corinthian order of its exterior (an enrichment lavished on no other of the Commission’s buildings), and by the sky-lit Memorial Hall with its Doric order, travertine marble finishes, and painted murals by Allyn Cox.

Another new building necessitated by outgrown facilities was the library ultimately named after President Alderman, who died in 1931. The Rotunda, despite its continued importance as a symbol of the University, no longer sufficed to house the University’s library. Completed in 1938, during the administration of Alderman’s successor, John L. Newcomb, and designed by architect R. E. Lee Taylor, the massive building was kept in scale by its situation in a deep ravine.

Alderman Library was funded through grants from the Works Progress Administration (WPA). As a result of the Great Depression and the economic measures aimed at spending the American economy back to health, the 1930s witnessed the largest federal investment in higher education since the Land Grant College Act of 1862. Another structure that benefited from this funding was Thornton Hall, the first academic building to be constructed west of Emmet Street. Fulfilling Alderman’s long-standing desire to house a professional school in Engineering, this building, completed in 1935, conformed to the grid established by Jefferson’s buildings, and so stood at angle to McCormick Road—the last major building at the University to do so. Its completion inaugurated the three-decade process of creating a new science complex.

With the onset of World War II, even federal funds became scarce, and major construction decelerated. The majority of projects during Newcomb’s presidency consequently involved the enlargement or renovation of existing facilities. Most prominent among these was the University Hospital, the exponential growth of the hospital plant during this period reflecting the growing specialization, competence, and complexity of medicine itself. The creation of many of the structures built during this period required the demolition of antebellum structures, such as William Pratt’s gatehouse (the “Chateau Front and Back”), much of Dawson’s Row, and the Anatomical Theater, designed by Jefferson himself, that once stood in front of the present location of Alderman Library. Although continuing to be centered on the Lawn, and honoring its designer in the style of its architecture, the University’s size and complexity in this period were beginning to compel development in unexpected directions.

1950: THE SUBURBAN CAMPUS

The impact of federal funding—through the GI Bill and the Cold War funding of education, particularly in the sciences—combined with the effect of social
By 1947, when Colgate Darden took over the University’s presidency, enrollment had grown to more than 5000 students, well beyond the highest pre-war level. During his tenure, Darden oversaw continued expansion as a result of this surge in enrollment as well as the post-war growth in the importance of teaching and research in the sciences: federal dollars were driving the expansion of higher education, partly a consequence of the rift with the Soviet Union and the resultant conviction that the nation must keep pace with its foes in the fields of education and science. One immediate concern was the completion of another project along McCormick Road, an enormous complex of dormitories. These residences were an effort to house many veterans attending school on the GI Bill--students who had at first been warehoused in a village of trailers at Copeley Hill. Although the University’s rapidly expanding needs made extensive new construction like this on the periphery of the Grounds inevitable, Darden hoped to counteract the centrifugal effects of such development. By various means, he sought to direct student life back to the Lawn and thus ensure that Jefferson’s compound would always remain the heart of the University.

Darden Administration: Expanding the Periphery, Preserving the Core

The rapid growth in the importance of science and technology, under the influence of Cold War priorities, led to the development of graduate programs in chemical, civil, electrical, and mechanical engineering, nuclear physics, and engineering physics, as well as undergraduate degrees in aeronautical engineering and engineering physics in the early 1950s. By 1950, a “high voltage lab” was under construction, and Thornton Hall, the original Engineering school, was to be enlarged three times, to accommodate the chemical engineering department and lab (1950), programs in aeronautical and mechanical engineering (1959), and expansion of the civil engineering program (1959). Directly across McCormick Road, a new building for the Physics Department was completed in 1954. Eventually a nuclear reactor (now decommissioned) was built as well.

Other professional schools prospered also. In 1954 a School of Business Administration commenced operations at Monroe Hall. The University’s medical center saw many advances: a new support facility and a new cancer center were designed in 1949, foreshadowing a much larger expansion of University Hospital, adding hundreds of new beds. The design of the hospital expansion illustrated Darden’s commitment to preserving the character of the Lawn. Assuming the form of a high-rise tower, the project reoriented the facility to face Jefferson Park Avenue, significantly reducing traffic around the Jefferson core and so helping to restore its contemplative character.

Darden’s wish to preserve the centrality of the Lawn in the experience of University students expressed itself in other ways as well. Eligibility for residence on the Lawn was extended beyond Virginia residents to all students without regard to geographical origin. In addition, consciously following Jefferson’s precedent in distributing pavilions among the heads of various departments, Darden announced that each of six schools would be represented by at least one resident professor--College and Graduate Studies, Law, Medicine, Engineering,
Education, and Business Administration. Meanwhile, the physical condition of Lawn itself was addressed. Missing trees were re-established on the Lawn, and the Garden Club of Virginia was authorized to restore the missing garden walls and redesign the gardens in Colonial Revival style. Alden Hopkins, landscape architect of the Colonial Williamsburg Foundation, and his successor in that position, Donald Parker, provided plans for restoring the west and east gardens in 1952 and 1965 respectively.

Out of the same concern for restoring the sense of community at the University, and mindful of what the GI Bill had done to alter the University’s demographic complexion and social character, Darden proposed a new student center. To counter what he saw as the social exclusion implicit in the fraternities and social societies that had dominated campus life for nearly a century, Darden secured state funding for the building, named for President Newcomb and completed in 1958. Like so many of the sizable additions to the University, Newcomb Hall was built into a slope to avoid challenging the scale of adjacent structures.

The centerpiece of Darden’s effort to refocus University life on the Lawn was New Cabell Hall. Mandated by the need for additional academic space in the College of Arts and Sciences brought about by the soaring post-war enrollment, the structure--built into a slope below the south end of the Lawn--assured that all students would continue to know and draw inspiration from Jefferson’s compound, moving through and around it on a daily basis.

In another way, too, New Cabell Hall was designed to honor the University’s origins. Like virtually every other major building completed during Darden’s administration--the McCormick Road Residences, Newcomb Hall, the Physics Building, Kerchof Hall (the latter serving as living quarters for trainees in the Judge Advocate General School)--it was designed by Eggers and Higgins, the successor firm of John Russell Pope, architect of the Jefferson Memorial. Eggers and Higgins continued the practice of building in the familiar Colonial Revival style, if with little relationship to Jefferson’s particular brand of classicism. The use of great, circular-head windows set with concentric arches of brick masonry became a familiar element in University buildings of this time.

Shannon Administration: Modern Needs, Modern Styles

Social changes already under way during Darden’s time accelerated during the administration of Edgar Shannon, appointed as Darden’s successor in 1959. The University’s student body took on a new face, and so did its architecture, which had shown remarkable consistency for over half a century, dating back to the origins of the University Beautiful movement.

Assisted by future Supreme Court Justice Thurgood Marshall, Gregory Swanson became, in 1950, the first black applicant to gain admission to the University, as a student of Law. However, another fifteen years would pass before remaining barriers to the routine admission of black students would finally be removed. Passage of the Civil Rights Act of 1964 finally ended the legality of racial segregation and so compelled the University to open its doors to black students on a footing equal to that of whites. In 1971, in response to a faculty committee’s recommendation--and to an order from a panel of three federal judges--women were admitted to the University. By 1972, females composed 45% of the entering class.
The completion of Gwathmey House in 1970 augmented the space available for female students; black students required no distinct accommodation. Over the longer term, however, changing demographics would profoundly affect the University’s physical plant: if the inclusion of black and female students was not to exclude others traditionally favored, larger enrollments would be necessary. For this and a host of other reasons, the University continued to grow at a breathtaking pace during Shannon’s presidency.

The social ferment that began in the 1960s—a ferment that had countless effects, including an end to the custom of wearing coats and ties to class—was mirrored by a revolutionary change in the architecture of University buildings. Like many other universities, Virginia had resisted modern architecture. The International Style, influenced by American architect Frank Lloyd Wright and strongly promoted by the teaching and commissions of European émigrés Walter Gropius and Ludwig Mies Van der Rohe, sought to capture the spirit of modern industrial society by using mass-produced materials—steel, glass, and concrete—in the honest expression of function and of structural forces.

Modern architecture not only challenged the authority of the classical style prevalent at the University and other campuses, but in its striking difference from that style posed a potential threat to the integrated, harmonious environment universities had nurtured through their master plans. In 1949, Joseph Hudnut, then dean of the Harvard School of Design, spoke out against the idea of master plans, which he considered “grand compositions corsetting the body of a live and unpredictable creature.” As an alternative to the master plan, Hudnut emphasized flexible development, based on principles of growth and always open to change.

Many professionals shared Hudnut’s view, and the importance of the master plan diminished noticeably in the years after World War II. Without an overarching concept to define a university’s physical properties, the individual building and its site, disconnected from their surroundings, became the primary unit for campus planning. These changes, together with the new prevalence of the automobile, imparted a suburban character to post-war development on most American campuses. Like American cities, colleges and universities sprawled over the land, following the transportation network.

Under Shannon’s administration, the University embraced several aspects of this reaction against the University Beautiful with its coherent plan and classical architecture. One significant change was the diffusion of decision-making in the design of new buildings across numerous committees, subject to advocacy by influential students and staff. This diffusion was the result of Shannon’s effort to democratize decision-making and to cope with the growing complexity of the University organism. No single panel of architects was deputized to enforce a grand vision or to make development cohere as before. At the same time, the growing consensus in favor of modernism in the design profession nationwide had its impact upon members of the Virginia Art Commission, which oversaw the design of state buildings. As a result, several notable buildings in modern styles were erected under Shannon’s watch.

Gilmer Hall was the first significant example of modern architecture to be completed at the University. During the late 1950s, members of the Virginia Art Commission and representatives from various University committees deemed the modern style especially fitting.
for projects involving technology and the sciences. Originally conceived as the “Life Sciences Building,” Gilmer Hall was to be the centerpiece of a larger science compound, to include structures for Chemistry and other sciences in addition to a library. In 1962, Ballou and Justice of Richmond, working with Stainback and Scribner of Charlottesville, designed the building in the contemporary style of Edward Durrell Stone, for whom the masonry screen had become a kind of signature in 1954, when his design for the U. S. Embassy in New Delhi appeared on the cover of Architectural Record. His style was adapted with acknowledgments to Jefferson, including Flemish-bond brickwork with ruled joints and, for the auditorium, undulating walls recalling those of the pavilion gardens. This merger of the modern and traditional came to characterize most work from the Shannon era.

University Hall perhaps provided the best opportunity to promote new styles in architecture, since its function defied historical solutions. Intercollegiate basketball was an enterprise near to the hearts of students and alumni alike, and the University’s admission in 1953 to the Atlantic Coast Conference—which has since become the greatest basketball conference in the nation--placed its athletic programs in direct competition with others in the region. Lawrence Anderson’s design for the roof of University Hall incorporated aspects of the approach of two contemporary masters of the medium of reinforced concrete. American architect Eero Saarinen’s buildings were sculptural, metaphorical, and thus romantic, suggesting a bird (TWA/New York), an aerofoil (Dulles), and a gateway (St. Louis). Italian engineer Pier Luigi Nervi’s buildings, on the other hand, were pure structure, each diagramming and abstracting the forces acting on it. Like Nervi’s work, Anderson’s University Hall exploited the expressive power of a structural idea. Like Saarinen’s best buildings, it made visual reference to an extrinsic shape—in this case, the dome of Jefferson’s Rotunda, which Anderson transmuted with a series of thin-shell concrete vaults to admit natural light. The Jefferson connection was strengthened by contrasting the white dome with red brick walls.

With the construction of University Hall began the development of “North Grounds,” an enclave of large-scale facilities where, until recently, the approved style remained resolutely modern, but not stridently so. The development of North Grounds was undertaken in an effort to cope with the explosive growth of the University. First among these new facilities were the Copeley Hill housing units, replacing the trailers that had occupied this ground since the end of World War II. Modern in form but clothed with Flemish-bond brickwork, these buildings reflected an attempt to establish a new design vocabulary while harmonizing with the University’s architectural traditions. These buildings were identical to multi-family units at Piedmont, produced by the same designer. Subsequently, the Law School and the Darden Business School moved to North Grounds, forming a kind of satellite campus.

The administration’s focus on modernism and future development did not reflect a lack of interest in the past—far from it. The reclamation of Jefferson’s original compound, begun during Darden’s administration, continued. Chinese railings conforming to Jefferson’s original designs were installed atop the colonnades after removal of iron railings dating from the mid-19th century. New walks of brick, laid herringbone fashion, crossed the Lawn and replaced the concrete walks of the colonnades, where additional paving was laid to protect the columns from staining by splashback from the red clay soil. (The concrete walks of the Ranges still remain.) Most important, the restoration of Jefferson’s Rotunda, first proposed in the 1950s, now moved
forward under the direction of Jefferson scholar Frederick D. Nichols, and funded by private and federal government sources.

Looking forward to the time when the University would outgrow extant buildings, Shannon acquired two historic properties: Morea, situated nearby on Sprigg Lane, and the Birdwood Tract, 550 acres of undeveloped land adjacent to Ivy Road, on which an important antebellum dwelling and its ancillary service buildings still stood.

At the beginning of Shannon’s presidency, Colgate Darden had remarked that the architectural needs of the University had been satisfied for the foreseeable future, and he advised his successor that the focus could now shift to building the faculty. Shannon applied himself to building both the University’s faculty and its physical plant. His efforts modernized the University while continuing the preserve its historic distinction. As a result of these efforts, the University of Virginia took its place among the nation’s distinguished institutions of learning.

CONCLUSION

AS WE APPROACH THE BICENTENNIAL OF THE UNIVERSITY’S FOUNDING, OUR RESPONSIBILITY IS CLEAR; TO ACT THOUGHTFULLY AND BUILD JUDICIOUSLY AS WE CONTINUE TO HONOR, AND ADD TO, THE LONG BUILDING LEGACY OF THIS INSTITUTION--A LEGACY THAT BEGINS WITH JEFFERSON AND CONTINUES TO THIS VERY DAY.

If this history teaches us anything, it is that higher education, though concerned with minds and ideas, is rooted in place and circumstance. Among the man-made places that comprise our everyday surroundings, none has been conceived with greater care or more sustained consideration than America’s colleges and universities. They are a national treasure. Like no other place in America, the campus embodies the highest purposes of our society, expressed through art and architecture.

No one understood this relationship between buildings, landscapes, and ideas better than Thomas Jefferson, whose completed University diagrammed a lifetime of social and educational thought. While Jefferson’s idea of the University formed itself around the metaphor of a village, later thinkers conceived of the university as a city. Both constructs make the point that universities are communities, subject to and reflecting the social, intellectual, and aesthetic trends that drive the larger society. Yet each remains a place apart, an ideal setting in which to build an idealized community. This has been true for campuses across the nation, yet in every instance the idea has found a unique expression, each time creating a distinctive sense of place.

Nowhere is this more evident than at the University of Virginia, an institution united by powerful visual themes and by a distinctive culture. Today we revere Jefferson’s buildings for their beauty and for their association with a beloved Founder, but they are equally important for the ideas they first embodied, for the subsequent history that is bound up in them, and for the larger social and aesthetic trends they represent. This way of understanding Jefferson’s buildings offers a basis upon which to understand and appreciate the many structures created after his death.
In the years since 1826, the University has become a diary of our national life, reflecting changes in art, architecture, politics, religion, and technology. Because these changes are ongoing, the University is, and will ever remain, a work in progress. Like books on the shelves of a great library, the University’s buildings and landscapes serve as touchstones of our cultural memory. Like those same books, some buildings outlive their functions and will be replaced. Certain others have enduring value, and will be preserved. The task of distinguishing between these extremes—and all the shades of difference between—demands our utmost care. To assist in that task, the following study provides a framework for assessing the importance of 120 buildings and 24 core landscapes in regard to the University’s unique history and their participation in larger themes of the American story.

EVALUATION METHODOLOGY

One goal of the Historic Preservation Master Plan was to develop a ranking of historic structures and landscapes which lists them with respect to their importance to the University’s historic development and character. To establish this list, an approach was developed which allowed all of the resources to be judged in a consistent manner. This required understanding how the building or landscape fit within the history of the University, and included an interior and exterior survey of each building or landscape and an evaluation of the building’s or site’s integrity.

Criteria were established for evaluating how the buildings and landscapes fit within the history of the University. Three categories of importance were used - History and Associations, Architecture, and Setting. History and Associations was divided into subcategories relating to specific events, people or themes. Using these criteria as a framework for judging each resource, its significance could be understood in relation to other comparable resources and to the University as a whole.

On-site surveys of individual buildings and landscapes assessed the integrity and physical condition of each resource. During these inspections, a list of character-defining features and elements was created and items of critical concern were noted. Character-defining features are those materials, systems or design features essential to the significance and integrity of the resource. Items of critical concern are conditions which threaten the long-term preservation or integrity of the resource.

Integrity is the level of completeness a building or landscape retains from its period of significance. Four categories of integrity were used depending on the state of the building or site:

- Intact – Unaltered
- Substantially Intact – Altered, essential character clearly discernable
- Compromised – Altered, essential character still discernable
- Destroyed – Altered, essential character completely effaced

Resources were looked at in their entirety and judged accordingly. In the majority of instances a single value is assigned to the resource, however, separate values are given to interiors and exteriors when circumstances warrant. Often this occurs when interiors have been considerably altered as a result of improvements while exteriors remain relatively untouched.
Based on the information gathered, each building and landscape was assessed and assigned a preservation priority - a ranking identifying the resource’s level of importance in terms of the University’s historic character. The priorities are divided into six groups:

Fundamental to University history and present character, which applies exclusively to the Jefferson buildings and Grounds
- Essential to University history and present character
- Important to University history and present character
- Contributing to University history and present character
- Not Contributing to University history and present character
- Significant Outside the University Context - Significant Outside the University Context was developed as a category to recognize important historic buildings and landscapes owned by the University that do not have no- table ties to its history and development. These buildings have also been assigned a ranking in one of the other four categories to further explain their relative importance.

Special Considerations for Evaluating Cultural Landscapes The evaluation of the University’s cultural landscapes presents some special challenges that should be noted. First a word must be said about the way that the framework plan delineates the cultural landscape resources of the campus. University property has been divided into 24 core landscapes which provide geographic and historical context for understanding the placement/development of individual buildings. These sectors are sometimes large and diverse and contain within them discreet subunits of varying historical significance and integrity. In such cases the evaluation has been made at the level of the subunit rather than the core landscape, as reflected in the accompanying chart.

Unlike many other universities, the University’s grounds did not develop under the guiding direction of a single vision. Jefferson’s 30-acre Academic Village has by the 21st century sprawled into a small city of 1135 acres, its form evolving according to contemporary values and fashions rather than an overarching master plan. In fact perhaps one of the few consistent patterns of University development is the institution’s refusal to follow any one of its many planning documents through to completion.

Under these circumstances, few landscapes can be expected to derive significance from association with a single designer or episode of construction. In their current form, these sites are more likely to bear the imprint of multiple layers of history and/or continued traditional land uses. Criteria used to evaluate the significance the University’s cultural landscape include the following:

- Significant within spatial organization of the campus plan:
 - Historic open space
 - Continuity of traditional land use (e.g. recreation)
 - Traditional circulation pattern/route
 - Historic entry/gateway or focal point
 - Significant view or vista
- Significant as a setting for historic building or sculpture
- Significant as a work of design
- Significant for association with an important event or person
Similarly, the integrity of these landscapes must be viewed through a realistic lens. Very few landscapes were found to possess integrity for the design or period of original development, the Bayly Building landscape being the one notable exception. In most cases, integrity was evaluated based on the survival of enough features to convey the general character of its historic appearance or the presence of features representing its evolution over multiple periods of development.

In assigning preservation priorities to the University landscape, consideration was given to all these factors. Some landscapes are significant on a par with buildings as structuring features of the University grounds and were evaluated according. Madison Bowl, the Cemetery and Observatory Hill (as a topographic feature) fall in this category. Others are important as an appropriate setting for the building they surround, such as the front terrace at Clark Hall. In other cases it is the traditional land use, such as recreation, that is desirable to perpetuate rather than specific physical features of the current site design. More- over, some landscapes, such as Memorial Gymnasium, lack integrity in their current form but are still capable of being restored to their historic appearance while others have been altered permanently, such as Scott Stadium.
<table>
<thead>
<tr>
<th>Building Name</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis Mountain Area</td>
<td></td>
</tr>
<tr>
<td>214 Sprigg Lane/Weedon House</td>
<td>Significant outside the history of the University (Contributing)</td>
</tr>
<tr>
<td>102 Cresap Road</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>108 Cresap Road</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>1939 Ivy Road</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Lewis and Hoxton Dorms</td>
<td>Contributing</td>
</tr>
<tr>
<td>North Grounds</td>
<td></td>
</tr>
<tr>
<td>JAG School</td>
<td>Important</td>
</tr>
<tr>
<td>Law School</td>
<td>Contributing</td>
</tr>
<tr>
<td>Sponsors Hall</td>
<td>Contributing</td>
</tr>
<tr>
<td>Copeley Housing</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Onesty Hall</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Faulkner Housing Complex</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Old Ivy Road Area</td>
<td></td>
</tr>
<tr>
<td>Montesano</td>
<td>Significant outside the history of the University (Contributing)</td>
</tr>
<tr>
<td>Fontana Food Center</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>2400 Old Ivy Road</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>McCormick Road West</td>
<td></td>
</tr>
<tr>
<td>Ruffner Hall</td>
<td>Important</td>
</tr>
<tr>
<td>Chemistry Building</td>
<td>Important</td>
</tr>
<tr>
<td>Mechanical Engineering Building</td>
<td>Contributing</td>
</tr>
<tr>
<td>Olsson Hall</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Health System Area</td>
<td></td>
</tr>
<tr>
<td>Claude Moore Health Sciences Library</td>
<td>Important</td>
</tr>
<tr>
<td>McLeod Hall</td>
<td>Important</td>
</tr>
<tr>
<td>Jordan Hall</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Primary Care Center</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Medical Research Lab (MR-4)</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>UVA Outpatient Surgery Center</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Emmet Street North</td>
<td></td>
</tr>
<tr>
<td>914 Emmet Street/Michie South</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>918 Emmet Street/Michie North</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Carruthers Hall</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Parking & Transportation/Millmont Warehouse</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Building Name</td>
<td>Ranking</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Observatory Hill Area</td>
<td></td>
</tr>
<tr>
<td>Shelburne Hall</td>
<td>Contributing</td>
</tr>
<tr>
<td>Slaughter Recreation Center</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Stone Hall/NRAO</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>High Energy Physics Building</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Arts Grounds/Rugby Area</td>
<td></td>
</tr>
<tr>
<td>Campbell Hall</td>
<td>Essential</td>
</tr>
<tr>
<td>Drama Education Building</td>
<td>Contributing</td>
</tr>
<tr>
<td>Lambeth Field Apartments</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Individual Properties and Sites</td>
<td></td>
</tr>
<tr>
<td>1018 West Main Street/Patton Mansion</td>
<td>Significant outside the history of the University (Contributing)</td>
</tr>
<tr>
<td>118 Oakhurst Circle</td>
<td>Significant outside the history of the University (Contributing)</td>
</tr>
<tr>
<td>Piedmont Faculty Housing</td>
<td>Contributing</td>
</tr>
<tr>
<td>Bice House</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Wilson Hall</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Clemons Library</td>
<td>Important</td>
</tr>
<tr>
<td>Student Activities Building</td>
<td>Not Contributing</td>
</tr>
<tr>
<td>Gooch-Dillard Dormitories</td>
<td>Important</td>
</tr>
</tbody>
</table>
Appendix D
Cultural Landscape Report Part 1

Table of Contents

Volume 1 • Academical Village Cultural Landscape Report Part 1

Table of Contents
List of Plans

1 • Administrative Data

A. Introduction
 A1. Academical Village Background
 A2. Academical Village Cultural Landscape Report Scope of Work
 A3. Academical Village Location
 A4. Landscape Character Areas
B. Methodology
 B1. Project Team
 B2. Archival Research
 B3. Historical Narrative & Period Plan Development
 B4. Academical Village Nomenclature
 B5. Landscape Character-Defining Features
 B6. Existing Landscape Field Reconnaissance & Mapping
 B7. Landscape & Archaeological Analysis
C. Findings Summary and Future Research Directions

2 • Pre-University Native American, Colonial and Europeans and African American Settlement, before 1817 *

A. Introduction
B. Before 1817, Pre-University Landscape Characterization
C. Before 1817, Pre-University Landscape History
 C1. Physical Setting
 C2. Paleo-Indian Period Land Use (prior to ca. 8,000 BC)
 C3. Archaic Period Land Use (ca. 8,000 to 12,000 BC)
 C4. Woodland Period Land Use (ca. 1,200 BC to AD 1,600)
 C5. Post-contact Native Land Use in the Virginia Piedmont, 1607 to 1735
 C6. Early colonial Period Land Use in the Virginia Piedmont, 1607 to 1735
 C7. European and African Settlement and James Monroe’s Lower Plantation, 1735 to 1817
3 Thomas Jefferson Design and Construction, 1817 to 1827
A. 1817 to 1827 Introduction
B. Thomas Jefferson Design and Construction Landscape Influences, 1817 to 1827
C. Central College Concept, Siting and Land, 1817 to 1819
 C1. Concept of Central College
 C2. Siting the Albemarle Academy
 C3. The Land, a Law of Nature
D. Original Construction of the Academical Village, 1817 to 1827
 D1. Enslaved African American Construction Contributions
 D2. Slave Servitude in Daily University Life
 D3. Topography, Surface and Subsurface Drainage
 D4. Trees and Turf
 D5. Trees on the Lawn and Early Period Plans
 D6. Gardens
 D7. Garden Walls
 D8. Paving Streets, Alleys, Service Courts and Paths
 D9. Water Supply and Sanitation
 D10. Buildings
 D11. Outbuildings
 D12. Enclosing the Grounds
 D13. General Landscape Character Accounts
E. 1827 Landscape Character and CDFs

4 Growth and Development of University, 1828 to 1860
A. 1828 to 1860 Introduction
B. Antebellum Landscape Development Characterization, 1828 to 1860
C. Antebellum Landscape Development History, 1828 to 1860
 C1. Academical Village Build Out, 1828 to 1850
 C2. Campus Expansion and Consulting Design Professionals, 1849 to 1860
 C3. Development of the South Lawn and Slopes, 1857 to 1860
D. 1860 Landscape Character and CDFs

5 Civil War and Recovery Landscape, 1861 to 1880
A. 1861 to 1880 Introduction
B. Civil War and Recovery Landscape Characterization, 1861 to 1880
C. Civil War and Recovery Landscape History, 1861 to 1880
 C1. Civil War and the University Landscape, 1861 to 1865
 C2. Post-War Aftermath and Recovery, 1866 to 1871
 C3. Renewal of the University Landscape, 1872 to 1880
D. 1880 Landscape Character and CDFs

Table of Contents | June 2013 Draft Chapters 1 to 9 | Page iv
6 ▪ Progressive and Campus Beautiful Renewal, 1881 to 1914 Pages 6.1 to 6.72

A. 1881 to 1914 Introduction
B. Progressive and Campus Beautiful Renewal Landscape Characterization, 1881 to 1914
C. Progressive and Campus Beautiful Landscape History, 1881 to 1914
 C1. Master Planning, Modern Infrastructure, and Landscape Consultant Ernest Bowditch, 1881 to 1889
 C2. Experiencing the Academical Village Landscape, 1884 to 1894
 C3. Facilities Renewal and Expansion, 1890 to 1895
 C4. Water and Sanitation Issues and Actions, 1889 to 1895
 C5. Rotunda Fire, October 27, 1895 and Aftermath
 C6. Post Fire Redevelopment by McKim, Mead & White, 1895 to 1898
 C7. Continued Campus Beautiful Improvement, 1897 to 1904
 C8. William Lambeth and Campus Landscape Enhancements, 1905 to 1908
 C9. Warren Manning, William Lambeth, and the Garden University, 1908 to 1914
D. 1914 Landscape Character and CDFs

7 ▪ Garden Campus Elaboration, 1915 to 1947 Pages 7.1 to 7.50

A. 1915 to 1947 Introduction
B. Garden Campus Elaboration Landscape Characterization, 1915 to 1947
C. Garden Campus Elaboration Landscape History, 1915 to 1947
 C1. Improvement of Gates, Roads, Alleys, and Walks, 1915 to 1925
 C2. Campus Ornamentation, the McIntire Theater, and the Architectural Commission, 1916 to 1938
 C3. Modernizing the Landscape, 1931 to 1947
D. 1947 Landscape Character and CDFs

8 ▪ Jeffersonian Revival Landscape, 1948 to 1981 Pages 8.1 to 8.58

A. 1948 to 1981 Introduction
B. Jeffersonian Revival Landscape Characterization, 1948 to 1981
C. Jeffersonian Revival Landscape History, 1948 to 1981
 C1. Jeffersonian Revival West Gardens Design, 1948 to 1950
 C2. Jeffersonian Revival West Gardens Construction, 1950 to 1952
 C3. Campus Beautification Expansion on the Historic Margins, and Vehicular Circulation, 1948 to 1959
 C6. Master Planned Campus Growth, 1966 to 1974
 C7. Landscape Construction on the South Slopes, 1966 to 1974
D. 1980 Landscape Character and CDFs
9 ■ Current Landscape Preservation, 1982 to 2013

A. 1982 to 2013 Introduction
B. 1982 to 2013 Current Landscape Characterization
C. Recent Landscape History, 1982 to 2013
 C1. External Recognition, Preservation Planning, and Landscape Maintenance, 1982 to 1987
 C2. Rise of Funding for Landscape Projects, Preservation Staff Professionalism, and Archeology, 1988 to 1999
 C3. Landscape Project Implementation Drive by Preservation, Sustainability, and Accessibility, 2000 to 2013
D. 2013 Archeological Investigations Summary and Plan *
 D1. Introduction to Archeological Investigations
 D2. Archeology in The Lawn, Landscape Character Area 1
 D3. Archeology in the North Rotunda Lawn, Landscape Character Area 2
 D4. Archeology in the East Gardens, Landscape Character Area 3
 D5. Archeology in the West Gardens, Landscape Character Area 4
 D6. Archeology in the South Lawn & Slopes, Landscape Character Area 5
E. 2013 Landscape Character and CDFs
 E1. The Lawn, Landscape Character Area 1
 E2. North Rotunda Lawn, Landscape Character Area 2
 E3. East Gardens, Landscape Character Area 3
 E4. West Gardens, Landscape Character Area 4
 E5. South Lawn and Slopes, Landscape Character Area 5

10 ■ Landscape and Archaeology Analysis

A. Landscape and Archaeology Analysis Introduction
B. Academical Village Landscape Historical Eras
 B1. 1817 to 1880 - Early Way of Life
 B2. 1881 to 1947 - Technology, Infrastructure, New Designs, and Expansions
 B3. 1982 to 2013 - Jeffersonian Revival, Historic Preservation and Contemporary Innovation
C. Analysis of Landscape Continuity and Change by Landscape Character Area
 C1. The Lawn, Landscape Character Area 1
 C2. North Rotunda Lawn, Landscape Character Area 2
 C3. East Gardens, Landscape Character Area 3
 C4. West Gardens, Landscape Character Area 4
 C5. South Lawn and Slopes, Landscape Character Area 5
D. Commemorating African American Contributions to the Academical Village Landscape
E. Synthesis of Archaeological Findings and Future Directions *
 E1. Principle Archaeological Feature Types within the Academical Village
 E2. The Formation and Transformation of the Archaeological Record of the Academical Village
 E3. Archaeological Sensitivity and Potential within the Academical Village
 E4. Future Directions for Archaeology

Table of Contents June 2013 Draft Chapters 1 to 9 Page vi
University of Virginia Academical Village Cultural Landscape Report Part 1

F. Understanding Landscape Significance, Integrity, Authenticity, and Outstanding Universal Value
 F1. Academical Village Historic Significance
 F2. Integrity and Authenticity
 F3. World Heritage Outstanding Universal Value
G. Summary of Academical Village Cultural Landscape and Archaeology Analysis Findings

* Primary author Heritage Landscapes LLC except as noted * authored by Rivanna Archeological Services LLC

Table of Contents June 2013 Draft Chapters 1 to 9 Page vii
Volume 2 • Academical Village CLR Archival Research Data Spreadsheet

Separate Document: final digital file provided, not printed

Data Fields:
- Year
- Full Date
- Digital File Name
- Source
- Record Group
- Image Code
- Material
- UVa Landscape Character Area (LCA)
- Primary Character-defining Feature (CDF)
- Secondary CDF
- Landscape Chronology
- Citation for Notes
- Bibliographic Entry
- Original Quotation, Excerpt,
- Caption, or Additional Notes
List of Plans

3. **Thomas Jefferson Design and Construction, 1817 to 1827**
 1. 1827 Landscape Plan

4. **Growth and Development of University, 1828 to 1860**
 2. 1860 Landscape Plan
 3. 1860 Tree Plan

5. **Civil War and Recovery, 1861 to 1880**
 4. 1880 Landscape Plan
 5. 1880 Tree Plan

6. **Progressive and Campus Beautiful Renewal, 1881 to 1914**
 6. 1914 Landscape Plan
 7. 1914 Tree Plan

7. **Garden Campus Elaboration, 1915 to 1947**
 8. 1947 Landscape Plan
 9. 1947 Tree Plan

8. **Jeffersonian Revival, 1948 to 1981**
 10. 1981 Landscape Plan
 11. 1981 Tree Plan

9. **Current Landscape Preservation, 1982 to 2013**
 12. 2013 Context Plan
 13. 2013 Landscape Plan
 14. 2013 Tree Plan
 15. 2013 Gardens & Alleys Tree Plan
 16. 2013 Walls, Paving & Objects Plan
 17. 2013 Gardens & Alleys Walls, Paving & Objects Plan
 18. 2013 Archaeological Investigations Plan
10 • Landscape and Archaeology Analysis

19. Circulation Overlay Plan
20. Garden Walls Overlay Plan
21. UVa Academical Village Tree List, Botanical & Common Names, 1827 to 2013